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Abstract

The upside Burkholder moment inequality is extended to 0 < p < 2 for Ls-bounded martin-
gales by adapting a result for continuous time martingales due to A. A. Novikov.

The Burkholder square-function inequalities ([1], Theorem 3.2) are of the form

pllQ(Sn)llp < [[Snllp < CpllQ(S)lp for 1 < p < o0

where S, = >} | X; is a Ly-bounded martingale, Q(S,) = (Z?Zl th)l/z and ¢, C), are positive
constants depending only on p. These are martingale counterparts of the Marcinkiewicz-Zygmund
([5]) inequalities for independent sequences and have important applications in the proof of limit
theorems for dependent processes. Alternative proofs can be found in Hall and Heyde ([3]) and
Chow and Teicher ([2]).

The question of interest is whether either of these inequalities holds for p < 1. A. A. Novikov
([6]) gave the corresponding inequality for p > 0 in the case of stochastic integrals with respect
to Brownian motion. He also gives a counter-example to show that the downside inequality does
not hold with p = 1. His result is reported and proved in Proposition 3.26 of [4].

The purpose of this note is to adapt Novikov’s result to the discrete martingale case to match
the Burkholder formulation, as follows. The major difference is that here the method of proof
requires Lo-boundedness.

Theorem Let S,, be an Lz-bounded martingale. For 0 < p < 2 there exists €}, > 0 depending
only on p such that

1Snllp < CpllQ(Sn)llp- (1)

Proof For the case p = 2 the inequality of (1) can be set to equality with Cy = 1, to reproduce the
orthogonality property of the martingale. Hence, consider p < 2. The following argument applies
except in one case, that where X7 = -+ = X,,_1 = 0 a.s. In this case ||S, ||, = |Q(Sn)llp = | Xnllp
and (1) holds as an equality with C), = 1.

For convenience of notation write m = p/2 < 1 and also let @, stand for Q(S,). Let B, =
250, 22;11 XX so that S2 = Q2 + B,,. Then for § > 0 and p > 0 to be chosen and n > 1
define

Y, =6(n+ Q%) + 2 =6pu+ (1+0)Q> + B,. (2)

With m < 1 the function 2™ is concave so that 2"~ 1(z™ + y™) < (x + y)™ for 2,y > 0. Apply
this formula to the first equality of (2) and take expectations to give the inequality

27 (B + Q2)"™ + BlSa ") < B(Y;"). ®)



Next write the telescoping sum
=Y"+ Z -Y") (4)

Letting the second equality of (2) define Y;, note that Q? — Q% ; = X? and so
Y; =Y = (1+0) X7 + AB;

where AB; = 222;11 XsX;. Taylor’s expansions of the terms in (4) to second order for ¢t =
2,...,n yield
YY" = mY" T (1 + 0)XE + ABy)
+ tm(m — 1) (Vi1 + 0:((1 + 6) X7 + ABy))
x (14 6)X2+ ABy)? (5)

m—2

with 6; € [0,1]. Since m < 1 the second-order term in (5) is non-positive. For the case t = 1,
noting that Q% = S? = X? and Qo = By = By = 0, write

V" = (6p+ (1+6)X7)" =mYy" (1 +6)X7 (6)

where Yy = dpp + (1 + 0)6; and 65 is defined by the second equality of (6). With p small, §; ~
m~/(m=1) X2 Combine (4) with (6) and also substitute (5) omitting the nonpositive final terms.
Taking expectations, noting E(AB;|F;—1) = 0 and then applying the LIE, gives

E(Y,;") < m(1+9) anE(anle)- (7)
t=1

By choice of p the functions Y;_; are bounded away from zero and hence the expectations exist,
for each n > 1.

Next define V; = p+ Q2 + 07152 fort = 1,...,n — 1 and Yy = p + (1 + 6~ 1)6;. Since
Y,"T 1 5m_11~/t7f1_ Uinequality (7) has the equivalent form

E(Y,") <m(l+1/6)0™ Zn: BT X7). (8)
t=1

Note that Y; 1 = pu+ Q7 + 6152 | — X?. The fact that there exists § > 0 small enough that

Z BE(Y," ' X?) Z (n+Q)"'X7) (9)

t=1

is shown by contradiction. Suppose that for some ¢, E(Y,;"* X?) > E((u+Q?)™ 1 X?) held for all
§ > 0. Either S2 ; = 0 with probability 1 or letting § | 0 would give E((u+Q3?)™ 1 X?2) < 0, which
is impossible unless X; = --- = X; = 0. Therefore, 3.1 | E(Y,"T1X?) > S0 E((u+Q3)™ ' X?)
for all 6 > 0 implies that Sthl = 0 a.s. for ¢t = 2,...,n which is the exceptional case identified
above.

By the mean value theorem there exist for t = 2,...,n r.v.s 9, € [0,1] such that

mp+Qf 1 +n XP)"TIXE = (u+ Q)™ — (1 + QF )™



For the case t = 1 the same equality holds with Q9 = 0 where for small enough p, n; ~
m~/(m=1) < 1. Since Q7 ; +n,X? < Q? and m < 1 it follows similarly to (9) that

m > B((p+ Q)" TIXY) <m Y B((n+ QFy + 0 XP) " XF)
t=1 t=1

E(u+ QD)™ Z (h+ QD)™ —E(n+Q7)™)
E(u+Q2)". (10)
Combining (3), (7), (9) and (10) gives
2" (TME(n+ Q)™ + B[S, ™) < (14 1/6)6™E(n+ Q)™
which rearranges, after restoring p = 2m, as
E[SulP < (2'7P2(1 4 1/8) — 1)6"*E(u + Q2)""?).

Since p is arbitrary it can be set as small as desired. Letting i — 0, the proof of (1) is completed
by setting
Cp = (27 PA(1+1/5,) — 1)V/Ps)/2

where §), is largest value of 0 that satisfies (9) for every n > 1. &

To gain a feel for the value of §, in this result consider the ‘worst case’ t = 2, where in (9) it
can be verified that the two expectations differ by § 71X 2 appearing in the left-hand expression
where X3 appears on the right. The solution defines a sufficient condition; when n is large,
satisfying (9) becomes a matter of 6_15371 dominating X? ‘on average’. Thus, asymptotically op
may be set simply to minimize C), as a function of p; for example for p = 1 the minimum of 1.53
is found at ¢ = 3.4.
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