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Abstract

The upside Burkholder moment inequality is extended to 0 < p ≤ 2 for L2-bounded martin-
gales by adapting a result for continuous time martingales due to A. A. Novikov.

The Burkholder square-function inequalities ([1], Theorem 3.2) are of the form

cp‖Q(Sn)‖p ≤ ‖Sn‖p ≤ Cp‖Q(Sn)‖p for 1 < p <∞

where Sn =
∑n
t=1Xt is a Lp-bounded martingale, Q(Sn) =

(∑n
t=1X

2
t

)1/2 and cp, Cp are positive
constants depending only on p. These are martingale counterparts of the Marcinkiewicz-Zygmund
([5]) inequalities for independent sequences and have important applications in the proof of limit
theorems for dependent processes. Alternative proofs can be found in Hall and Heyde ([3]) and
Chow and Teicher ([2]).

The question of interest is whether either of these inequalities holds for p ≤ 1. A. A. Novikov
([6]) gave the corresponding inequality for p > 0 in the case of stochastic integrals with respect
to Brownian motion. He also gives a counter-example to show that the downside inequality does
not hold with p = 1. His result is reported and proved in Proposition 3.26 of [4].

The purpose of this note is to adapt Novikov’s result to the discrete martingale case to match
the Burkholder formulation, as follows. The major difference is that here the method of proof
requires L2-boundedness.

Theorem Let Sn be an L2-bounded martingale. For 0 < p ≤ 2 there exists Cp > 0 depending
only on p such that

‖Sn‖p ≤ Cp‖Q(Sn)‖p. (1)

Proof For the case p = 2 the inequality of (1) can be set to equality with C2 = 1, to reproduce the
orthogonality property of the martingale. Hence, consider p < 2. The following argument applies
except in one case, that where X1 = · · · = Xn−1 = 0 a.s. In this case ‖Sn‖p = ‖Q(Sn)‖p = ‖Xn‖p
and (1) holds as an equality with Cp = 1.

For convenience of notation write m = p/2 < 1 and also let Qn stand for Q(Sn). Let Bn =
2
∑n
t=2

∑t−1
s=1XsXt so that S

2
n = Q2n + Bn. Then for δ > 0 and µ > 0 to be chosen and n ≥ 1

define
Yn = δ(µ+Q2n) + S2n = δµ+ (1 + δ)Q2n +Bn. (2)

With m < 1 the function xm is concave so that 2m−1(xm + ym) ≤ (x + y)m for x, y ≥ 0. Apply
this formula to the first equality of (2) and take expectations to give the inequality

2m−1
(
δmE(µ+Q2n)m + E|Sn|2m

)
≤ E(Y mn ). (3)
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Next write the telescoping sum

Y mn = Y m1 +
n∑
t=2

(Y mt − Y mt−1). (4)

Letting the second equality of (2) define Yt, note that Q2t −Q2t−1 = X2
t and so

Yt − Yt−1 = (1 + δ)X2
t + ∆Bt

where ∆Bt = 2
∑t−1
s=1XsXt. Taylor’s expansions of the terms in (4) to second order for t =

2, . . . , n yield

Y mt − Y mt−1 = mY m−1t−1
(
(1 + δ)X2

t + ∆Bt
)

+ 1
2m(m− 1)

(
Yt−1 + θt((1 + δ)X2

t + ∆Bt)
)m−2

× ((1 + δ)X2
t + ∆Bt)

2 (5)

with θt ∈ [0, 1]. Since m < 1 the second-order term in (5) is non-positive. For the case t = 1,
noting that Q21 = S21 = X2

1 and Q0 = B0 = B1 = 0, write

Y m1 =
(
δµ+ (1 + δ)X2

1

)m
= mY m−10 (1 + δ)X2

1 (6)

where Y0 = δµ + (1 + δ)θ1 and θ1 is defined by the second equality of (6). With µ small, θ1 ≈
m−1/(m−1)X2

1 . Combine (4) with (6) and also substitute (5) omitting the nonpositive final terms.
Taking expectations, noting E(∆Bt|Ft−1) = 0 and then applying the LIE, gives

E(Y mn ) ≤ m(1 + δ)
n∑
t=1

E(Y m−1t−1 X2
t ). (7)

By choice of µ the functions Yt−1 are bounded away from zero and hence the expectations exist,
for each n ≥ 1.

Next define Ỹt = µ + Q2t + δ−1S2t for t = 1, . . . , n − 1 and Ỹ0 = µ + (1 + δ−1)θ1. Since
Y m−1t−1 = δm−1Ỹ m−1t−1 inequality (7) has the equivalent form

E(Y mn ) ≤ m(1 + 1/δ)δm
n∑
t=1

E(Ỹ m−1t−1 X2
t ). (8)

Note that Ỹt−1 = µ+Q2t + δ−1S2t−1 −X2
t . The fact that there exists δ > 0 small enough that

n∑
t=1

E(Ỹ m−1t−1 X2
t ) ≤

n∑
t=1

E((µ+Q2t )
m−1X2

t ) (9)

is shown by contradiction. Suppose that for some t, E(Ỹ m−1t−1 X2
t ) > E((µ+Q2t )

m−1X2
t ) held for all

δ > 0. Either S2t−1 = 0 with probability 1 or letting δ ↓ 0 would give E((µ+Q2t )
m−1X2

t ) ≤ 0, which
is impossible unless X1 = · · · = Xt = 0. Therefore,

∑n
t=1 E(Ỹ m−1t−1 X2

t ) >
∑n
t=1 E((µ+Q2t )

m−1X2
t )

for all δ > 0 implies that S2t−1 = 0 a.s. for t = 2, . . . , n which is the exceptional case identified
above.

By the mean value theorem there exist for t = 2, . . . , n r.v.s ηt ∈ [0, 1] such that

m(µ+Q2t−1 + ηtX
2
t )m−1X2

t = (µ+Q2t )
m − (µ+Q2t−1)

m.
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For the case t = 1 the same equality holds with Q0 = 0 where for small enough µ, η1 ≈
m−1/(m−1) < 1. Since Q2t−1 + ηtX

2
t ≤ Q2t and m < 1 it follows similarly to (9) that

m
n∑
t=1

E((µ+Q2t )
m−1X2

t ) ≤ m
n∑
t=1

E
(
(µ+Q2t−1 + ηtX

2
t )m−1X2

t

)
= E(µ+Q21)

m +

n∑
t=2

(
E(µ+Q2t )

m − E(µ+Q2t−1)
m
)

= E(µ+Q2n)m. (10)

Combining (3), (7), (9) and (10) gives

2m−1(δmE(µ+Q2n)m + E|Sn|2m) ≤ (1 + 1/δ)δmE(µ+Q2n)m

which rearranges, after restoring p = 2m, as

E|Sn|p ≤ (21−p/2(1 + 1/δ)− 1)δp/2E(µ+Q2n)p/2).

Since µ is arbitrary it can be set as small as desired. Letting µ→ 0, the proof of (1) is completed
by setting

Cp = (21−p/2(1 + 1/δp)− 1)1/pδ1/2p

where δp is largest value of δ that satisfies (9) for every n ≥ 1.

To gain a feel for the value of δp in this result consider the ‘worst case’t = 2, where in (9) it
can be verified that the two expectations differ by δ−1X2

1 appearing in the left-hand expression
where X2

2 appears on the right. The solution defines a suffi cient condition; when n is large,
satisfying (9) becomes a matter of δ−1S2t−1 dominating X

2
t ‘on average’. Thus, asymptotically δp

may be set simply to minimize Cp as a function of p; for example for p = 1 the minimum of 1.53
is found at δ = 3.4.
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