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Abstract

We propose a resampling method for stationary dependent time series, based on Rademacher
wild bootstrap draws from the Fourier transform of the data. The main distinguishing feature
of our method is that the bootstrap draws share their periodogram identically with the sample,
implying good properties under autocorrelation of arbitrary form. A drawback of the basic
procedure, that the bootstrap distribution of the mean is degenerate, is overcome by a simple
Gaussian augmentation with variance estimated by a response surface fitted to preliminary
simulations. Extensive Monte Carlo evidence is reported comparing alternative bootstrap
methods in tests of significance and location in a regression model with autocorrelated shocks,
and also of unit roots.

1 Introduction

In econometric applications, bootstrap inference in dependent data is typically motivated as
a remedy for an incorrect or incomplete model specification. The bootstrap principle can be
viewed in this case as a vehicle for estimating the missing model components. Since the object
is to model not merely the marginal distribution of the sample data but its joint distribution,
this is an exercise entailing diffi cult compromises. Unless the distribution possesses some basic
regularities, at a minimum stationarity, the sample reduces in effect to a single observation.
Even in a nonparametric context, it is inevitably necessary to assume the joint distribution has
suffi cient structure to allow it to be reconstructed from the sample data.

The various forms of block bootstrap represent one approach to performing this reconstruc-
tion. They are nonparametric in character, and mimic the sample dependence of the whole by
the joint distributions of short segments. However, since these segments must be independently
drawn with replacement and concatenated, the ‘joins’problem places a limitation on the effec-
tiveness of the mimicry. A leading alternative to the blocks method is the sieve autoregressive
bootstrap, which is surely well adapted to capturing certain types of dependence but equally
must fail to capture other types, as discussed in Kreiss, Paparoditis and Politis (2011).

A third approach is to use an estimate of the spectral density of the series to model the
dependence. A number of such methods are proposed in Kirch and Politis (2011), defining
what they call the ‘time-frequency toggle’(TFT) class. One of their methods involves randomly
resampling the discrete Fourier transform (DFT) of the regression residuals after standardizing
the DFT points to equal variance, using a kernel estimator of the spectral density. The resampled
points, with real and imaginary parts treated equivalently, are recoloured by multiplication by
the spectral weights before inversion back to the time domain. Another variant uses standard
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Gaussian drawings in place of the residual DFT, and a third uses normalized periodogram weights
as probabilities to resample DFT points, at random but with a higher probability of being drawn
from the same frequency range as the sample points they replace. A related approach is that of
Theiler et al. (1992), who resample the phase components of the data distribution while holding
the frequency magnitudes fixed, estimated by the periodogram.

A feature of these methods is that implementation requires a choice of kernel function and
bandwidth. By contrast, Hidalgo (2003) proposes two methods that do not depend on estimating
the spectral density. In one proposal, the residuals’DFT coordinates divided by their moduli
are randomly resampled before being renormalized. In the second, the standardized time do-
main residuals are randomly resampled and the Fourier transform of this draw is constructed to
form coordinates multiplying the absolute DFT coordinates of the original sample. These latter
methods require the test regressions to be run in the frequency domain.

The bootstrap proposed in this paper has features in common with all these, specifically in
resampling the DFT, and is similar to Hidalgo’s methods in not being dependent, in its basic
form, on estimation of the periodogram. The bootstrap draw is made using the Rademacher wild
bootstrap to switch signs of the DFT points, but the bootstrap regressions are run conventionally
after applying the inverse transform to the DFT. While the bootstrap draws are conditionally
independent, they have the special property that their periodogram is numerically identical to
that of the sample data. Hence, if the data dependence is fully embodied in second moments
the bootstrap distribution mimics the sample distribution as closely as is possible. By the same
token, the method is not applicable to inference problems relating to the periodogram points
themselves or functions thereof, autocovariances and autoregressive parameters in particular.1

All the above-cited procedures are aimed at the basic problem of inference in regression models
with autocorrelated disturbances. They stand in contrast to the extensive literature on inference
on the periodogram and so-called ratio statistics, as surveyed in Lahiri (2003) Chapter 9, and
Kreiss and Paparoditis (2011), who focus chiefly on resampling the periodogram. This class of
procedures have a different motivation to our own.

The paper is organized as follows. Section 2 describes the proposed bootstrap algorithm and
derives key statistical properties. The proofs for these and subsequent results are gathered in
Appendix A.1. Among these properties is the peculiarity that the bootstrap distributions of the
series mean and variance are degenerate. This feature poses no problem for significance tests on
slope coeffi cients in regressions with autocorrelated disturbances, and Section 3 shows such tests
to be consistent. The basic method is unsuitable for tests of location and of unit roots, although
an augmented version of the algorithm is shown to be consistent for tests of this type given a
consistent long-run variance estimator. We propose implementing these latter tests by fitting a
response surface to Monte Carlo-estimated performance measures, the details of which are given
in Appendix A.3.

Section 4 summarizes the results of a large Monte Carlo study that compares our method with
leading bootstrap alternatives in a variety of forms for the neglected autocorrelation. The full
results are available in an online supplement. The wide range of experiments is made possible,
given limited computing resources, by the ‘warp-speed’Monte Carlo method of Giacomini et al.
(2013). Appendix A.2 provides a brief description and motivation for this approach. Section 5
considers the multivariate case and shows that the cross-periodogram and cross-autocovariance
properties extend the univariate case as expected. Simulation of a bivariate location test when the
data are generated by a VAR(1) with correlated shocks indicates that our simple augmentation
formula can render good size properties. Section 6 concludes.

1See Proposition 2.1 of Kirch and Politis (2011) for a related result.
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2 The Fourier wild bootstrap

2.1 The FWB algorithm

Let x = (x0, . . . , xn−1)′ denote the random n-vector whose joint distribution is to be modelled
by the bootstrap. We assume this to be a finite realization of a covariance stationary process
with population mean of zero. In the sequel, to establish the properties of the algorithm we
shall assume that x satisfies conditions suffi cient to satisfy a central limit theorem for dependent
processes.

The procedure, which we refer to by the acronym FWB, consists of three basic steps:

1. Compute the discrete Fourier transform (DFT)

z = Qx (2.1)

where Q (n× n) denotes the unitary symmetric Fourier matrix with elements

qjk = n−1/2e−2πijk/n

for and j, k = 0, . . . , n− 1, where i =
√
−1.

Then, for replications b = 1, ..., B:

2. Apply the Rademacher wild bootstrap to z, switching signs (of the real and imaginary parts
together) with probability 1

2 . Symbolically,

z∗b = W bz (2.2)

where W b = diag(wb) and wb = (wb0, . . . , wb,n−1)
′ is a n-vector of independent random

draws with
P (wbj = 1) = P (wbj = −1) = 1

2 .

3. Create the bootstrap draw in the time domain by

x∗b = Re(Q†z
∗
b) + Im(Q†z

∗
b) (2.3)

where Q† denotes the conjugate transpose of Q.

This algorithm has some features requiring careful explanation. While the rationale for sum-
ming the real and imaginary components at Step 3 is explained in the discussion following The-
orem 2.3 below, it may be helpful to motivate this choice of algorithm by contrasting it with
another.

Because x is real-valued, a well-known property of the DFT z is that Re(zn−j) = Re(zj) and
Im(zn−j) = − Im(zj) for j = 0, . . . , n/2 − 1 (n even) or j = 0, . . . , (n − 1)/2 (n odd). Likewise,
for any z with this property Q†z is real valued. Therefore, consider replacing (2.2) at Step 2 by

z̃∗b = W̃ bz (2.4)

where W̃ b is a special case ofW b constructed so that w̃bj is drawn like wbj for j in the indicated
ranges, but w̃b,n−j = w̃bj . Hence, only half as many independent random drawings are taken.
Since the sign pattern is preserved, and hence z̃∗b shares the indicated property with z, Step 3
must then yield a bootstrap draw with the form

x̃∗b = Q†z̃∗b (2.5)
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which is real-valued, as the special case of (2.3) when the imaginary component is zero. It will
be noted that (2.5) is just a special case of (2.3). Imposing the restriction on W b must imply a
different conditional distribution of the bootstrap since fewer Rademacher draws are utilized, and
additional bootstrap replications must implicitly be needed to estimate the bootstrap distribution
with equivalent precision. However, apart from this fact, the draws (2.5) share all the relevant
properties of (2.3) to be derived in Section 2.2. The restricted form of the algorithm confers no
apparent advantages over the general form. It is the latter form that is used in our simulation
experiments reported in Section 4.

2.2 Properties of the Algorithm

Begin by writing

Q = A+ iB

Q† = A− iB

where A and B (n× n) are the symmetric matrices defined elementwise by

{A}ij = n−1/2 cos(2πij/n)

{B}ij = n−1/2 sin(2πij/n)

for i, j = 0, . . . , n − 1. A and B are mutually orthogonal, with AB = BA = 0, since for each
pair i, j = 0, . . . , n− 1,

{AB}ij =
1

n

n−1∑
k=0

cos(2πik/n) sin(2πjk/n)

=
1

2n

n−1∑
k=0

sin(2π(i+ j)k/n) +
1

2n

n−1∑
k=0

sin(2π(i− j)k/n)

= 0.

As in a number of similar identities to be determined subsequently, the sums vanish here since
the terms are either zero, or equal and opposite in pairs. Note that the unitary property of Q
implies

QQ† = Q†Q = AA+BB = I. (2.6)

Consider the structure of these matrices in more detail. The row (column) of A labelled 0,
and also that labelled n/2 for the case n even, is a unit vector times n−1/2. Otherwise, the pairs
of rows (columns) of A labelled j and n − j, respectively, are equal. Accordingly A has rank
(n + 1)/2 when n is odd or n/2 + 1 when n is even. These facts, and standard trigonometric
identities, imply in particular that

{AA}ij =


1, i = j = 0, and i = j = n/2 (n even)
0.5, i = j and i = n− j, for j > 0 and j 6= n/2 (n even)
0, otherwise.

(2.7)

Note that AAA = A. B has a structure comparable to A except that the rows (columns)
labelled 0 and n/2 (n even) are zero, and otherwise the pairs of rows (columns) labelled j and
n− j are equal in magnitude but opposite in sign. The rank of B is (n− 1)/2 (n odd) or n/2− 1
(n even),

{BB}ij =


0, i = j = 0, and i = j = n/2 (n even)
0.5, i = j > 0, and j 6= n/2 (n even)
−0.5, i = n− j, j > 0, and j 6= n/2 (n even)
0, otherwise,

(2.8)
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and BBB = B. Also note the direct confirmation from (2.7) and (2.8) of (2.6)
In the light of these facts, consider the steps of the proposed bootstrap draw. For ease of

notation let the subscript b denoting the draw be henceforth implicit. The first Fourier transform
yields

z = Ax+ iBx (2.9)

and
z∗ = WAx+ iWBx. (2.10)

The inverse Fourier transform leads to

Q†z
∗

= A(WAx+ iWBx)− iB(WAx+ iWBx)

= (U + iV )x (2.11)

(say) where

U = AWA+BWB (2.12)

V = AWB −BWA. (2.13)

Defining
R = U + V (2.14)

the FWB draw has the form
x∗ = Rx. (2.15)

We may compare (2.15) with other bootstrap formulae, having this form with different randomly
drawn matrices. In the standard Efron (1979) bootstrap, R is constructed with n columns
drawn randomly from the identity matrix with replacement. In the wild bootstrap R is diagonal,
with randomly drawn diagonal elements. The various block bootstrap schemes construct R
from random blocks of consecutive columns of the identity matrix, while the sieve autoregressive
method forms R as an Efron matrix (as defined above) postmultiplied by an upper triangular
matrix of moving average weights.

For i, j = 0, . . . , n− 1 the elements of U and V take the form

{U}ij =
n−1∑
k=0

wkΦijk

and

{V }ij =
n−1∑
k=0

wkΨijk

where

Φijk = n−1 [cos(2πik/n) cos(2πjk/n) + sin(2πik/n) sin(2πjk/n)]

= n−1 cos(2π(i− j)k/n) (2.16)

and

Ψijk = n−1 [cos(2πik/n) sin(2πjk/n)− sin(2πik/n) cos(2πjk/n)]

= −n−1 sin(2π(i− j)k/n). (2.17)
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Setting Υijk = Φijk + Ψijk, the bootstrap series therefore have coordinates

x∗i =

n−1∑
j=0

(n−1∑
k=0

wkΥijk

)
xj (2.18)

where the parenthesized sums of terms are the elements rij of the matrix R in (2.15).
For 0 ≤ i, j < n− 1 and for each k = 0, . . . , n− 1, note that

Υi+1,j+1,k = Υijk (2.19)

and since cos(2πmk/n) = cos(2π(m − n)k/n) and sin(2πmk/n) = sin(2π(m − n)k/n) for 0 ≤
m ≤ n we also find that

Υi+1,0,k = Υi,n−1,k (2.20)

for 0 ≤ i < n− 1. Thus, U and V are both Toeplitz matrices having the circulant property, that
each row reproduces the one above with a shift of one place to the right, with the last column
entry wrapping around to the first position. The x∗i in (2.18) are linear combinations of the
sample series having random weights with this circulant form, which makes it easy to see how
the bootstrap draws inherit the autocorrelation structure of the sample.

Letting ι (n×1) denote the column of ones, U and V have the following additional properties.

Theorem 2.1

(i) Uι = w0ι.

(ii) V ι = 0.

(iii) U ′V = 0.

(iv) U ′U + V ′V = In.

(All proofs are given in Appendix A.1). Hence, (2.15) has the following special properties. First,

ι′x∗ = ι′Rx = w0ι
′x (2.21)

which says that the sum of the bootstrap series matches the sum of either x or −x, with equal
probability 1

2 , depending on the value of w0. Second, since

R′R = In (2.22)

by (2.14) and Theorem (2.1) (ii) and (iv),

x∗′x∗ = x′x. (2.23)

If the sample data are expressed in mean deviation form such that ι′x = 0, as is usual in
applications, the conditional distributions of the mean and variance of the bootstrap draws are
therefore both degenerate, being equal with probability one to the sample mean (0) and the
sample variance, respectively. We explore the implications of these facts in the sequel.

Consider the alternative algorithm obtained by replacingW by the special case W̃ , as defined
following equation (2.4), and so define Ũ and Ṽ as the obvious variants of (2.12) and (2.13). It
is easy to verify from the forms of A and B that AW̃B = BW̃A = 0 and hence Ṽ = 0.
This verifies the earlier assertion that the imaginary component of the inverse DFT vanishes, and
x̃∗ = Ũx. The following bootstrap properties depend on the forms of A and B and hold for
arbitrary choices of W , including W̃ in particular. Since Ṽ = 0 is merely a special case, they
hold for x̃∗ just as for x∗, and therefore do not require separate statements. For compactness
we leave the alternative cases implicit and refer only toW in formulae, noting that the result of
substituting W̃ is to eliminate the imaginary terms.
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Theorem 2.2 The periodogram of a FWB draw is identical with that of the sample series.

Corollary 2.1 The periodogram of x∗ in (2.15) matches that of the inverse transform in (2.11).

Next, let E∗(·) denote the expected value under the bootstrap distribution of the random
elements w0, . . . , wn−1, conditional on the sample. Let xj for j = 0, . . . , n−1 denote the elements
of x and let x∗i denote the corresponding elements of the FWB draw.

Theorem 2.3 E∗(x∗i ) = 0, and for m ≥ 0 and i ≥ m,

γ∗nm := E∗(x∗ix
∗
i−m) =

1

n

n−1∑
j=m

xjxj−m. (2.24)

Note how the bootstrap draw must be defined by (2.14) to achieve this result. The real and
imaginary parts in (2.11) both have the circulant property producing the correct autocorrelation
structure of a draw, but the associated scale parameters are individually too small. The one
exception is the caseW = W̃ so that the imaginary part is zero. If the sample data are expressed
in mean deviation form, Theorem 2.3 gives the autocovariance function of the bootstrap.

These results show that the bootstrap distribution is closely affi liated with the sample distri-
bution and, for some purposes, too closely affi liated to be useful. As has been noted by Kreiss
and Paparoditis (2011), it is clearly not feasible to use this bootstrap to analyse the distribution
of functionals of the periodogram points. However, the implications of (2.21) and (2.23) that the
bootstrap distribution has restricted rank should not be confused with dependence under that
distribution. The following is shown by direct calculation.

Theorem 2.4 Let W a and W b denote independent Rademacher draws defining Ra and Rb in
(2.14) and let x∗a = Rax and x∗b = Rbx. Letting x∗a = (x∗a1, . . . , x

∗
an)′ and x∗b = (x∗b1, . . . , x

∗
bn)′,

E∗
(
x∗raix

∗s
bj

)
= E∗(x∗rai )E

∗(x∗sbj ).

for all i, j = 0, . . . , n − 1 and positive integers r and s. The same holds for pairs x̃∗a and x̃
∗
b

defined in (2.5).

Next, consider the following remarkable implication of expression (2.15) noting that the el-
ements of R = {rij} are the parenthesized expressions in (2.18). Defining a Gaussian sequence
as a random sequence (finite or infinite) whose finite dimensional distributions are multivariate
Gaussian, the rij have the following property.

Theorem 2.5 (i) For each fixed pair i, j,
√
nrij

d→ N(0, 1). (ii) For each i the sequences
{
√
nrij}n−1j=0 are asymptotically Gaussian.

Expression (2.18) can be viewed in two ways. From the standpoint of the bootstrap distribu-
tion conditional on the data, x∗i = r′ix, where r

′
i is a row of R, is a linear combination with fixed

weights x1, . . . xn, of increments that are individually Gaussian in the limit. The further implica-
tion is that x∗i itself is asymptotically Gaussian. On the other hand, from the standpoint of the
data distribution in the context of a given bootstrap draw, x∗i is the weighted sum of x1, . . . , xn
with fixed weights {rij}n−1j=0 , the parenthesized terms in (2.18). This implies the following.

Theorem 2.6 If the process generating the sample x satisfies the conditions of the central limit
theorem, the distribution of the FWB series in a given bootstrap draw is asymptotically Gaussian
with probability 1.
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We do not spell out explicit suffi cient conditions for this latter convergence in view of the exten-
sive existing literature on this topic, but we may cite de Jong (1997) whose Theorem 2 specifies
dependence conditions formulated as near-epoch dependence on a mixing process. These are
among the least restrictive known and this framework admits both linear and nonlinear depen-
dence structures. As is appropriate to the present case, de Jong’s theorem is for triangular arrays
where the weighting of observations depends on sample size in the manner of the elements of
(2.15).

We thus obtain the curious result that the bootstrap draws form an asymptotically Gaussian
sequence with respect to both data and bootstrap distributions. This asymptotic property ex-
tends to statistics that are linear functions of the data. Should higher moments of the data
as well as the autocorrelation structure influence the distribution of sample statistics, Theorem
2.6 implies that the method is most appropriate to samples that are stationary with Gaussian
characteristics. However, in linear regression models where only second moments are involved,
the method should be robust to the form of the shock distribution, subject only to existence of
the variance.

Finally, recalling the assumption that E(xj) = 0, define the autocovariance sequence of the
observed series by γm = E(xjxj−m) for −∞ < m <∞. Let

γ̂∗nm :=
1

n

n−1∑
i=m

x∗ix
∗
i−m (2.25)

such that E∗( γ̂∗nm) = γ∗nm as defined in (2.24).

Theorem 2.7 For fixed m ≥ 0,
γ∗nm

pr→ γm (2.26)

and
E∗( γ̂∗nm − γ∗nm)2

pr→ 0. (2.27)

These convergences in probability relate to expectations under the bootstrap distribution and
are defined with respect to the data distribution. Taken together, (2.26) and (2.27) imply that
the bootstrap estimator is consistent for the autocovariances of the underlying data.

3 Implications for Testing

Consider how this bootstrap might operate in the context of inference on β in a linear regression
model

y = Xβ + u (n× 1)

where u is autocorrelated. The formal assumptions are as follows.

Assumption 1 The series u and X (n × k) are weakly dependent processes having summable
autocovariances.

Assumption 2 n−1X ′ X →prMXX <∞, positive definite.

Assumption 3 X is strongly exogenous with respect to u, with zero dependence at all leads and
lags.

Since the autocorrelation is to be modelled nonparametrically, the final assumption is required
to rule out cases where X coordinates might depend on lags of u coordinates. Assumption 1
is unavoidable since we shall need to construct autocorrelation consistent variance estimators to
ensure the test statistics are asymptotically pivotal.
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3.1 Significance Tests

A significance test of β1, the first (without loss of generality) element of β, may be based on the
asymptotically pivotal statistic

t =
β̂1

s.e.(β̂1)

where the standard error is computed using a suitable robust variance estimator. Partition the
regressors into first column and remainder, as X = [x1 X2]. Under the null hypothesis β1 = 0
the statistic has the form

t =

√
n
∑n

t=1 lntut√
V̂n

(3.1)

where u = (u1, . . . , un)′ and lnt is the tth element of the vector

l =
M2x1
x′1M2x1

(n× 1) (3.2)

with M2 = I −X2(X
′
2X2)

−1X ′2. An autocorrelation-consistent (AC) variance estimator ap-
propriate to appear in (3.1) has the form

V̂n =

Mn∑
m=−Mn

wnmγ̂nmn

n∑
t=|m|+1

lntln,t−|m| (3.3)

where Mn = o(n) and

γ̂nm =
1

n

n∑
t=|m|+1

ûtût−|m| =
1

n

n∑
t=|m|+1

utut−|m| +Op(n
−1).

The wnm are kernel weights, from a formula ensuring V̂n > 0 and with wnm = wn,−m and wnm → 1
as n→∞ for fixed m.2

The numerator of (3.1) has variance

Vn = nE
(

E
((∑n

t=1 lntut
)2∣∣∣X))

=
∑n−1

m=1−n
γmn

∑n

t=|m|+1
E(lntln,t−|m|) (3.4)

where γm = γ−m = E(utut−m). Under the regularity conditions specified in Theorem 2.6,
which must include {γm, m ≥ 0} being an absolutely summable sequence,

√
n
∑n

t=1 lntut is
asymptotically normal with variance

V = plimVn =
∑∞

m=−∞
γm plimn

∑n

t=|m|+1
lntln,t−|m|. (3.5)

The convergence in probability in the right-hand member of (3.5) is specified with respect to
the sampling distribution of the regressors, and holds under our assumptions which specify in
particular that the probability limit appearing in the last member is finite. Regularity conditions
for consistency of the kernel estimator are close to those suffi cient for the cited CLT, as detailed
in de Jong and Davidson (2000) inter alia, and V̂n →pr V leads to the usual conclusion that
t→d N(0, 1) under the null hypothesis.3

2The Bartlett and Parzen kernels are valid choices, see e.g. Andrews (1991).
3“→pr”and “→d”denote convergence in probability and distribution respectively.
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Now consider the bootstrap statistic. The bootstrap regressand is y∗nt = x′tβ̂ + u∗nt for
t = 1, . . . , n where u∗n1, . . . , u

∗
nn are resampled by the FWB from the least squares residuals

ût. Observe the use of array notation in this context, which is appropriate because in view of
(2.21) the series u∗nt for t = 1, . . . , n has the special property

n∑
t=1

u∗nt = 0 (3.6)

for each n. Letting γ̃∗nm = n−1
∑n

t=|m|+1 û
∗
ntû
∗
n,t−|m| where û

∗
n1, . . . , û

∗
nn are the residuals from the

bootstrap regression, the bootstrapped test statistic is

t∗ =
β̂
∗
1 − β̂1
s.e.(β̂

∗
1)

=

∑n
t=1 lntu

∗
nt√

V̂ ∗n

(3.7)

where

V̂ ∗n =

Mn∑
m=−Mn

wnmγ̃
∗
nmn

n∑
t=|m|+1

lntln,t−|m|. (3.8)

Note that γ̃∗nm = γ̂∗nm +Op(n
−1) where γ̂∗nm is defined in (2.25).

Theorem 3.1 If the conditions of Theorem 2.6 hold and x1 6= ι (the unit column), then t∗ →d

N(0, 1).

This convergence is with respect to the distribution of the sample data with the bootstrap draw
conditionally fixed. It occurs with probability 1 under the bootstrap distribution, and so tells us
what happens under the distribution of multiple independent bootstrap draws in large samples.
It might be noted that even if the data series were wholly arbitrary and the CLT conditions failed,
the limit distribution in question would still be Gaussian, as a corollary of Theorem 2.5. The
conditions of Theorem 2.6 are required only to ensure correct calculation of the limiting variance.

The bootstrap disturbances have the special property (3.6) not shared with the sample distur-
bances but the distribution of the statistic would be the same without this restriction imposed,
provided the X2 variables include the intercept (unit column). Then, the residuals sum to zero
by the familiar property of least squares and

∑n
t=1 lntut has the same value whether ut is in

mean-deviation form or otherwise. The same is true of
∑n

t=1 lntu
∗
nt, notwithstanding that the

mean-deviation form of u∗nt is identical with the original. The distribution of the bootstrap sta-
tistic is therefore invariant to restriction (3.6). Even in a regression with intercept term excluded,
provided the disturbances have population mean of zero the asymptotic variance is still given by
(3.5), and the limit distribution is unchanged. An additional feature of (3.8) is that

γ̂∗n0 =
1

n

n∑
t=1

û2t +Op(n
−1) (3.9)

where the right-hand side sum does not vary over the bootstrap replications thanks to (2.23)
and the remainder reflects the differences û∗nt − u∗nt. This is however a small-order effect on the
bootstrap dispersion of V̂ ∗n that does not affect its limit in probability.

An alternative to (3.3) is the heteroscedasticity and autocorrelation consistent (HAC) formu-
lation

V̂ H
n =

Mn∑
m=−Mn

wnmn
n∑

t=|m|+1
lntln,t−|m|ûtût−|m|. (3.10)
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A minor advantage of (3.10) is that property (2.23) plays no part. Closely analogous arguments
can be given for the validity of the bootstrap test based on (3.10) and its bootstrap counterpart.
The key steps in linking the two formulations are to show that under the present assumptions,
E(V̂ H

n ) = Vn as defined in (3.4), and that if V̂ H∗
n denotes the bootstrap counterpart of (3.10)

with û∗nt replacing ût, then E∗(V̂ H∗
n ) = E∗(V̂ ∗n ). The proof of the counterpart of Theorem 3.1

with V̂ H
n replacing V̂n therefore follows very similar lines.

3.2 Tests of Location and Unit Roots

The case x1 = ι, as when β1 is the intercept of the regression, leads to a different result. In this
case,

√
n

n∑
t=1

lntu
∗
nt =

√
n

dn

n∑
t=1

u∗nt +
√
n

n∑
t=1

(
lnt −

1

dn

)
u∗nt (3.11)

where dn = ι′M2ι. The first right-hand side sum in (3.11) vanishes identically by (3.6). The
variance of (3.11) under the bootstrap distribution is different from that of the numerator in (3.1)
and, in particular, is not estimated consistently by (3.8). The conclusion is that the FWB fails
in tests of location.

This is in fact a common limitation of frequency domain methods. Hidalgo’s (2003) method
explicitly casts the data into mean deviation form, and while the bootstrap means in the TFT
procedures of Kirsch and Politis (2011) do possess a distribution, the authors are careful to point
out (page 3, third paragraph), that this cannot be identified with the distribution of the sample
mean. Testing the significance of the intercept in regression models is sometimes viewed as of
minor importance in applied econometric work, but tests of location are nonetheless an important
testbed in methodological studies; see for example McElroy and Politis (2002).

There is also the problematic case of the unit root test. Under the null hypothesis of a unit
root the observed process has the form yt =

∑t
s=1 us, and Dickey-Fuller-type statistics feature

(with y0 = 0) the term ∑n

t=1
yt−1ut = 1

2

(
y2n −

∑n

t=1
u2t

)
. (3.12)

Since bootstrap series y∗n1, . . . , y
∗
nn must be constructed by cumulating bootstrap draws u

∗
n1, . . . ,

u∗nn, it is clear from (3.6) that the FWB bootstrap distribution of y∗nn is degenerate, so that
bootstrap unit root tests must fail. Simulated null distributions will in fact converge on limits
involving a Brownian bridge in place of a Brownian motion.

We propose a simple device to overcome these limitations. If the bootstrap entails resampling
a series ût expressed in mean deviations, what is required is that draws based on this series
should exhibit randomly distributed sample means having central tendency zero. This effect can
be achieved by adding to u∗nt for each t an independently drawn scalar random variable. Letting
Z∗ denote a N(0, 1) drawing and

ω2 =

∞∑
m=−∞

γm (3.13)

the coordinates
u∗∗nt = u∗nt + ωZ∗/

√
n (3.14)

for t = 1, . . . , n have a sample mean that is distributed normally with mean zero and variance
ω2/n. We call the additional term in (3.14) the ‘surrogate mean’of the bootstrap draw. Pro-
visionally assuming ω2 is known, replacing u∗nt with u

∗∗
nt replaces the first right-hand side term

in (3.11) with ωZ∗/dn. Since the augmentation is Gaussian and independently drawn, under
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the assumptions of Theorem 2.6 the large-sample distribution of n−1/2
∑n

t=1 u
∗∗
t matches the

corresponding distribution for ut. We note in view of (2.23) that

n∑
t=1

u∗∗2t =
n∑
t=1

û2t + ω2Z∗2

similarly to (3.9). There therefore exists an upward bias in a variance estimate based on the
augmented bootstrap, although this is of Op(n−1) as n→∞.

We refer to the FWB procedure applied to the augmented bootstrap disturbances as the
“augmented Fourier wild bootstrap”(AFB). Be careful to note that the augmentation vanishes
from formulae in every case where the residuals appear in mean-deviation form. Hence, tests of
slope coeffi cients are identical in the AFB and the unaugmented FWB.

In a unit root test based on the regression ∆yt = φyt−1 + ut, suppose ut is a zero-mean I(0)
process whose distribution validates the usual Dickey-Fuller result

nφ̂ =
n−1

∑n
t=2 yt−1∆yt

n−2
∑n

t=2 y
2
t−1

d→ B(1)2 − σ2/ω2

2
∫ 1
0 B

2dr
(3.15)

where σ2 = E(u2t ), ω
2 is defined in (3.13) and B is standard Brownian motion on [0, 1]. Following

the substitution in (3.12), B(1) is the limit in distribution of yn/ω
√
n and is standard normal.

This is the property that the FWB bootstrap draw fails to deliver. The key result for under-
standing the role of the augmentation is the following, which validates the application both to
unit root tests and to tests of location of stationary series.

Theorem 3.2 Let the array {u∗nt, t = 1, . . . , n} represent the FWB draw subject to the restriction∑n
t=1 u

∗
nt = 0. Also define u∗∗nt as in (3.14). Letting y

∗∗
nt =

∑t
s=1 u

∗∗
ns and Y

∗∗
n (r) = n−1/2y∗∗n,[nr]

for 0 ≤ r ≤ 1, Y ∗∗n →d Y
∗∗ = ωB as n→∞. 4

Some remarks about the nature of this convergence are in order. The stationary array {u∗∗nt}
is not ergodic but the strong law of large numbers nonetheless applies in the sense that, thanks
to (2.21),

1

n

n∑
t=1

u∗∗nt = n−1/2ωZ∗ → 0 a.s.

as n→∞. Similarly, if {ut} is stationary and ergodic then thanks to (2.23),

1

n

n∑
t=1

u∗∗2nt =
1

n

n∑
t=1

û2t +
ω2Z∗2

n
→ E(u21) a.s.

It may also be useful in certain contexts such as cointegration testing (see Phillips and Ouliaris
1990, inter alia) to remark that this convergence is mixing in the sense of Rényi (compare Hall
and Heyde 1980, page 57). Let {Fnt, 1 ≤ t ≤ n, n ≥ 1} denote the filtration defined by the
bootstrap draw {u∗∗nt} conditional on the data, and F =

∨
n,tFnt. That the events {Y ∗∗ ≤ y} for

y ∈ R are independent of every E ∈ F follows from continuity of the probability measure and
the facts that |u∗∗nt − u∗nt| → 0 a.s. for each t as n→∞, and that Z∗ is an independent drawing.

From these considerations, it is straightforward to establish that when the null hypothesis
is true, the various unit root test statistics under the bootstrap distribution converge to the

4The indicated convergence in distribution is with respect to the Skorokhod topology on [0, 1].
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corresponding functionals of Brownian motion specified for the sample data. In particular, The-
orem 3.2 is suffi cient to establish the limit distribution indicated in (3.15) for nφ̂

∗
, the formula

corresponding to nφ̂ in which ut is replaced by u∗∗nt throughout.
Of course, the critical assumption underlying this claim is that ω is known. In practice this

has to be estimated and the effectiveness of the augmentation depends on the properties of this
estimator. A kernel-based HAC variance estimator computed for the sample data is the natural
expedient, and Kirsch and Politis (2011) adopt a similar device to implement their unit root
test. However, we find experimentally that the standard kernel estimator does not behave too
well, with an excessive error in rejection probability (ERP) remaining, appearing greater both
as the sample is small and the degree of autocorrelation is large. Estimators computed from
fitted residuals are of course biased downwards in finite samples. This effect is compensated by
the usual factor of n/(n− k) when the disturbances are independent but in correlated cases it is
harder to control. The solution adopted in the present study is to construct a response surface
correction depending on both sample size and a measure of the degree of autocorrelation in the
sample, based on preliminary calibration experiments. The details of this method are given in
Appendix A.3.

4 Monte Carlo Evidence

Simulation experiments were performed using the ‘warp speed’technique proposed by Giacomini
et al. (2013). In this approach, the bootstrap distribution is estimated once for the whole experi-
ment, rather than repeatedly for each replication, permitting an order-of-magnitude reduction in
computational cost. By the use of this technique, it has been feasible to explore the performance
of our proposed methods in a wide range of models. The method is explained and motivated in
Appendix A.2. The number of Monte Carlo replications is set to K = 50, 000, a feasible choice
for the warp speed method.

One way in which warp-speed experiments differ from conventional simulations is that they
do not capture the approximation due to a feasibly small number of bootstrap draws. By con-
trast, the results approach the asymptote in measuring bootstrap rejection rates. There do exist
circumstances where warp speed could fail, as when the bootstrap distribution is not well defined,
but there are no grounds to suppose such problems exist in our case. As a check, a conventional
experiment was run with 1000 replications and 399 bootstrap draws in each. No difference in the
results was found that could not be accounted for by the usual margin of experimental error.

The full set of experimental results are reported in the accompanying supplement, available
for download.5 Systematic comparisons entail looking at a range of cases and the burden of both
reporting and absorbing the resulting plethora of results threatens to become excessive. Therefore
the tables below show only summaries of the full results, the average performance over fixed sets
of disturbance dependence structures and sample sizes. Since the same cases are simulated for
each procedure these averages provide rankings for comparison. Table entries are quoted to the
nearest two digits for values below 99, noting that additional digits are essentially noise.

Tables 1, 3 and 5 show averages of the percentage absolute size distortions in tests of nominal
significance level 5%. For example, an average experimental rejection rate of either 6% or 4%
would result in a table entry of 20, while an average rejection rate of either 10% or 0% would
appear as 100. Tables 2, 4 and 6 show the averages of estimated percentage powers under specified

5The online supplement is at http://people.ex.ac.uk/jehd201/AFB_Supplement.pdf. In addition to the 5% test
size distortions and test powers summarized here, the supplement contains tables of Cramer-von Mises statistics,
showing the differences between the distribution of the bootstrap null p-values and the uniform distribution.
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alternatives. True powers are being compared here, since the tests are in each case correctly sized
making use of the empirical tabulations obtained from simulating the null hypothesis.

The sample sizes compared are n = 50, 200 and 800. The table columns show the comparisons
for different types of autocorrelation, as well as for alternative i.i.d. distributions for the shocks,
denoted Et. These are either standard normal or standardized Student’s t(3). In the columns
headed AR in the tables, the disturbances are generated as

Ut = ρUt−1 + Et (4.1)

with ρ = 0.3, 0.6 and 0.9. Thus, in these entries a total of nine cases are averaged, three values of
ρ and three of n. The columns headed MA show the performance over moving average schemes
of the form

Ut = Et + Et−m (4.2)

for cases m = 1, 2 and 4, and the three sample sizes, again 9 cases in total. These latter models
provide a contrast to the smooth and monotone AR spectral densities, and are of interest in
particular since the AFB and SAR methods depend on fitted autoregressive approximations. The
columns headed Fractional show the averages over fractionally integrated disturbance processes
having the form

Ut = (1− L)−d+ Et (4.3)

where the fractional operator (1 − L)−d+ truncates lags to positive values of t. Here, six cases
are averaged, d = 0.1 and d = 0.3 with the three sample sizes. These models are in a different
category from the AR and MA because under strong dependence the HAC test statistics are not
asymptotically pivotal.

Since the cases are arbitrarily chosen, take care to note that there is no comparability across
columns in the tables. The full sets of results in the online supplement should be consulted to
see the individual results that go to make up these averages.

4.1 Significance tests

Tables 1—4 show the results of experiments from a regression model with intercept and two
exogenous regressors,

Yt = β0 + β1X1t + β2X2t + Ut, t = 1, . . . , n

Regressor X1 is a serially independent standard normal (N(0,1)) sequence, and regressor X2 is a
AR(1) process with coeffi cient equal to 0.5, driven by N(0,1) shocks. The regressors are sampled
afresh at each replication, so the experimental results are not contingent on a fixed regressor set
but on the specified distributions. With one exception, the test statistics are robust t ratios with
standard errors computed by the HAC estimator with Parzen kernel and Newey-West (1994)
plug-in bandwidth. The bootstrap significance tests use the signed statistics with equal-tailed
rejection regions.

The experiments compare the AFB test6 with a number of bootstrap alternatives, with re-
sults in the rows of the tables. In the first of the Kirsch and Politis (2011) TFT methods cited
in the introduction, the spectral density is estimated with the Parzen window and a bandwidth
of [n1/3]. HB1 denotes the first of the Hidalgo (2003) algorithms, in which the regressions are
performed in the frequency domain with robust test statistics in this case calculated using for-
mula (10) of Hidalgo’s paper. Also compared are the moving blocks method of Künsch (1989)

6 In the case of slope coeffi cient tests the AFB and FWB procedures are identical, and the table rows are labelled
accordingly.
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AR MA Fractional
Normal t(3) Normal t(3) Normal t(3)

FWB 4.0 5.3 7.4 6.9 4.0 6.0
TFT 9.8 8.2 7.9 7.2 4.8 9.1
HB1 4.4 5.1 3.5 3.0 3.0 4.0
MBB 7.4 6.8 7.6 7.2 5.5 5.6
SAR 3.4 4.3 6.0 9.1 4.8 6.1
Asy. 63 54 52 42 51 42

Table 1: Average size distortion: regression slope coeffi cients

AR MA Fractional
Normal t(3) Normal t(3) Normal t(3)

FWB 54 58 55 60 76 54
TFT 54 58 54 59 73 75
HB1 64 67 56 61 79 82
MBB 54 59 54 61 73 78
SAR 53 58 53 59 72 75
Asy. 66 68 66 70 86 85

Table 2: Average powers: regression slope coeffi cients

with block length [n1/3], denoted MBB in the tables,7 and the sieve-autoregressive bootstrap of
Bühlmann (1997), denoted SAR, with lag length chosen by the Akaike criterion up to a maximum
of [0.6n1/3]. Asymptotic tests using the standard tabulations were also run to provide a baseline
for comparison. The bootstrap methods were applied subject to a pretest for autocorrelation,
the standard Efron (1979) bootstrap being used if the absolute value of the first-order residual
autocorrelation coeffi cient is less than 2/

√
n.8 The averages in Tables 1 and 2 are taken over the

two slope coeffi cients, as well as over the sample sizes and autocorrelation parameters. Tables
3 and 4 shows the averages for the test for significance of the intercept, a case for which the
TFT and HB1 bootstraps are unavailable. Tables 2 and 4 show average power performances for
alternatives βj = 3/

√
n, for j = 0, 1, and 2. These cases were selected to yield rejection rates

exceeding the null case, but at the same time not too close to unity.
For the intercept experiments, we recorded the means of the generated samples and also the

surrogate means of the AFB draws. To check on the match of distributions, the variances of these
two quantities were calculated for a representative experiment. These are tabulated on page 19
of the online supplement. The average of these ratios (variance of the bootstrap means over
variance of the sample means) over the 12 models compared is 1.067. While the discrepancies
appear linked to sample size, they are scarcely larger overall than what experimental error might
produce, increasing confidence in our response surface variance estimate.

7The stationary blocks bootstrap method of Politis and Romano (1994) was also investigated, but the results
were generally similar to moving blocks. The experimental results were also relatively insensitive to block length,
with [2n1/3] also being tried.

8 In preliminary experiments this strategy appeared to improve performance in several contexts. There are
many ways to implement such a pre-test, and in a practical setting, a Q test (Box and Pierce 1970) might also be
considered for this purpose. The HB1 tests are based on frequency-domain regression and do not use a pre-test.
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AR MA Fractional
Normal t(3) Normal t(3) Normal t(3)

AFB 19 17 60 58 430 449
MBB 109 101 60 57 425 417
SAR 26 27 58 54 403 392
Asy. 255 257 126 123 550 560

Table 3: Average size distortion: regression intercept

AR MA Fractional
Normal t(3) Normal t(3) Normal t(3)

AFB 42 33 34 45 77 70
MBB 42 43 44 45 77 76
SAR 30 30 40 43 75 77
Asy. 60 62 55 58 83 84

Table 4: Average powers: regression intercept

4.2 Unit Root Tests

Alternative bootstrap tests of the unit root hypothesis have been studied by Ferretti and Romo
(1996), Park (2003) and Paparoditis and Politis (2005), and in the TFT framework by Kirsch
and Politis (2011 Section 6.3). See also Park (2002) and Kreiss and Paparoditis (2003) for related
research on these methods. Tables 5 and 6 summarize the results obtained with the augmented
Dickey-Fuller test using the AFB and alternatives, where the lag length is chosen to optimize the
Akaike criterion up to a maximum of [2n1/3]. In their experiments Kirsch and Politis (2011) apply
an augmentation comparable to our own, employing a kernel estimator (see their Section.7.2).
We have not attempted to replicate this version of the technique but results obtained with the
basic TFT algorithm are reported in the online supplement.

The data sets generated in each replication under the null hypothesis of a unit root have the
form

Yt = Yt−1 + Ut, t = 1, . . . , n

where Y0 = 0 and Ut is generated by one of (4.1), (4.2) or (4.3) with Et i.i.d. drawings from either
the Gaussian or standardized Student t(3), as indicated in the table. To create the bootstrap
draws, the data set is differenced and the differences regressed unrestrictedly on the lagged level,
to form the residual series for resampling. This unrestricted filtering step is necessary to ensure
the tests have power by undoing the effect of over-differencing under the alternative, although
this must increase small-sample size distortion in some degree. The entries of Table 5 and 6
are the averages of the same combinations of autocorrelation and sample size as in Section 4.1,
the full results being reported in the online supplement. Cases of the alternative hypothesis are
generated by setting Yt = Ut so that the rejection rates are related in the obvious way to the
degrees of induced autocorrelation in the series. These features of the experiment can be clearly
seen in the tables of individual model results in the online supplement.

Unlike the regression tests of the previous sections which rely only on a nonparametric HAC
variance estimator, the ADF test incorporates a parametric autocorrelation correction whose ad-
vantages are dramatically illustrated in Table 5. Even when the dependence is not autoregressive,
the asymptotic tests are competitive with the various bootstraps in the average comparison.
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AR MA Fractional
Normal t(3) Normal t(3) Normal t(3)

AFB 10 8 18 19 21 18
MBB 13 10 17 16 27 26
SAR 3.4 5.4 22 20 18 24
Asy 13 8.1 19 17 26 25

Table 5: Average size distortion: ADF tests.

AR MA Fractional
Normal t(3) Normal t(3) Normal t(3)

AFB 83 84 88 88 96 96
MBB 83 83 88 88 96 96
SAR 84 85 87 88 96 96
Asy 85 85 88 88 96 96

Table 6: Average powers: ADF tests.

5 The Multivariate Case

For simplicity’s sake the analysis has thus far dealt with the case of a single autocorrelated series.
In the obvious extension to multiple time series that may be cross-autocorrelated, the essential
feature of the basic multivariate draw, to preserve the required characteristics, is that the same
Rademacher variates must be used for each element of the process. If X (n × r) denotes the
matrix whose columns are the time series of each of r variables, the FWB draw takes the form

X∗ = RX (5.1)

where R is defined as before by (2.14).
Without loss of generality it suffi ces to consider the bivariate case, with r = 2. Two additional

theorems suffi ce to establish the requisite properties, as follows. The cross-periodogram of X =
(x1,x2) is in general a complex-valued process.

Theorem 5.1 The cross-periodogram of X∗ = (x∗1,x
∗
2) is identical with that of X.

We can calculate the means under the bootstrap distribution of the cross-autocovariances via the
following corollary of Theorem 2.3.

Theorem 5.2 Let xpi denote the ith element of vector xp, for i = 0, . . . , n−1, and p = 1, 2, and
let x∗pi denote the corresponding element of the bootstrap draw. For m ≥ 0 and i ≥ m,

E∗(x∗1ix
∗
2,i−m) =

1

n

n−1∑
j=m

x1jx2,j−m

and

E∗(x∗2ix
∗
1,i−m) =

1

n

n−1∑
j=m

x2jx1,j−m.

These results establish the theoretical properties of the basic multivariate bootstrap, on the
same basis as the univariate case. It remains to consider how best to implement the AFB proce-
dure of Section 3. Let Ω̂ denote an empirical HAC covariance matrix ofX and let lower triangular
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Y1t Y2t Y1,t−1 Y2,t−1
Y1t 1.124 0.424 0.309 0.379
Y2t 0.424 1.138 0.312 0.241

Table 7: VAR covariances

Nominal significance level 0.1 0.05 0.025 0.01
Rejection rates, χ2(2) criterion 0.1256 0.0692 0.0400 0.0194
Rejection rates, AFB criterion 0.1024 0.0511 0.0264 0.0109

Table 8: Wald test of joint significance of series means - results from 50,000 replications

P̂ denote its Cholesky decomposition, such that Ω̂ = P̂ P̂
′
. Then, letting Z∗ (r × 1) denote a

standard Gaussian vector, the vector of surrogate means might be computed as n−1/2P̂ D̂
1/2
Z∗

where D̂ denotes an r × r diagonal matrix of suitable weights. A low-cost implementation of
this method would be to use the univariate augmentation described in Appendix A.3, applied
equation by equation, to generate the diagonal elements of D̂.

Systematic comparisons are not attempted in this instance, but we report evidence on the
adequacy of this augmentation scheme for testing locations in a bivariate model. Experimental
series of length n = 500 were generated by the VAR(1) model

Y1t = 0.2Y1,t−1 + 0.2Y2,t−1 + E1t

Y2t = 0.3Y1,t−1 + 0.1Y2,t−1 + E2t

where (E1t, E2t) are serially independent Gaussian with unit variances and contemporaneous
covariance γ12 = 0.3. Table 7 shows the variances and zero-order and first-order covariances of
the resulting series, solved from the Yule-Walker equations.

The estimation stage of the experiment tests the hypothesis that the series means are jointly
zero using the asymptotically pivotal Wald statistic

W = nµ̂′Ω̂
−1
µ̂

where µ̂ is the vector of sample means and Ω̂ the HAC variance matrix implemented with the
Parzen kernel and Newey-West (1994) plug-in bandwidth. Table 8 compares null rejection rates
at various nominal significance levels, in 50,000 replications of the experiment, for two cases; the
asymptotic test using the χ2(2) critical values, and the AFB procedure as described. As before,
the warp-speed Monte Carlo method has been used for the bootstrap case.

6 Concluding Remarks

We investigate a simple bootstrap for dependent processes based on a Rademacher wild bootstrap
draw from the discrete Fourier transform. While similar methods have been proposed, our variant
has the feature of exactly reproducing the sample periodogram in the bootstrap draws. The basic
FWB algorithm does not require a choice of bandwidth or other arbitrary parameterization, a
feature shared with the Hidalgo (2003) methods.

In the tests of significance of slope coeffi cients, the simulations show that the FWB, Hidalgo
1 and sieve autoregressive algorithm all perform comparably with autoregressive disturbances.
The poorer performance of the TFT algorithm is, we conjecture, due to its dependence on a
kernel periodogram estimator. Hidalgo’s method does well under non-autoregressive dependence,

18



and possibly this is due to the fact that all the time-domain methods rely on an HAC kernel
estimator. These findings suggest possible directions for refinement of the techniques.

In the location and unit root tests, the AFB and sieve autoregression again behave relatively
well under autoregressive dependence. The implementation of the AFB can doubtless be refined,
although the method achieves a reasonable match of sample mean distributions. As an alterna-
tive to the response surface approach to bias correction, we considered pre-whitening the kernel
estimator using an AR(1) filter as suggested by Andrews and Monahan (1992). In trials this
method did appear to reduce the ERP, although not as effectively as the response surface. The
response surface is calibrated using autoregressive dependence, and there is certainly evidence in
the tables that it performs better in this framework that when faced with the moving average
cases. An improved calibration method is another possible avenue for further research.
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A Appendices

A.1 Proofs

Proof of Theorem 2.1. Parts (i) and (ii) follow directly from the facts thatAι = (
√
n, 0, . . . , 0)′

andBι = 0. For Part (iii), using the facts thatA andB are symmetric and orthogonal we obtain

U ′V = AWAAWB −BWBBWA.

Observe thatWA is a matrix obtained from A by changing the signs of certain rows, and AW
is its transpose. WAAW is therefore a matrix defined in the same way as AA in (2.7), except
that a number of the non-diagonal elements may have changed signs. Specifically, since w2i = 1,

{WAAW }ij =


1, i = j = 0 and i = j = n/2 (n even)
0.5, i = j, j 6= 0 and j 6= n/2 (n even)
0.5wiwj , i = n− j
0, otherwise

It follows that the matrix AWAAW is defined in the same manner as A, except that certain
pairs of columns may be replaced by zero columns. Thus, for j 6= 0 and j 6= n/2 (n even),
{A}ij = {A}i,n−j and hence

{AWAAW }ij =
n−1∑
k=0

{A}ik {WAAW }kj

= {A}ij {WAAW }jj + {A}i,n−j {WAAW }n−j,j
= {A}ij

[
{WAAW }jj + {WAAW }n−j,j

]
= 1

2 (1 + wn−jwj) {A}ij .

The rule is that the replacement by zeros of the jth and (n−j)th columns occurs if wjwn−j = −1.
Further,

{AWAAWB}ij =
1

2

n−1∑
k=0

(1 + wkwn−k) {A}ik {B}kj

=
1

2n

n−1∑
k=0

(1 + wkwn−k) cos(2πik/n) sin(2πjk/n)

=
1

4n

n−1∑
k=0

[sin (2πk (i+ j) /n) + sin (2πk (i− j) /n)]

+
1

4n

n−1∑
k=0

wkwn−k [sin (2πk (i+ j) /n) + sin (2πk (i− j) /n)] . (A-1)

Note that the first sum of terms in the last member of (A-1) vanishes since the summands
are equal and opposite in pairs, with the kth term cancelling the n− kth for k 6= 0 (n odd) and
for k 6= 0, n/2 (n even). However, the sign of wkwn−k is invariant under replacement of k by
n − k. Hence, the second set of summands also cancel in pairs, in the identical manner. We
conclude that AWAAWB = 0. The same form of argument shows that BWBBW matches
B apart from some column replacements by zero columns, according to the same rule, and that
BWBBWA = 0. This concludes the proof of (iii).
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To prove part (iv), note that the identities AB = 0, AA +BB = I and WW = I imply
respectively

U ′U = AWAAWA+BWBBWB

= I −AWBBWA−BWAAWB

and
V ′V = AWBBWA+BWAAWB.

Proof of Theorem 2.2. For any vector a, let the notation a◦2 denote the element-wise square,
the Hadamard product with itself. This is a vector with the same dimension as a. Then the
periodogram points of x can be written as

|z|◦2

2π
=

(Ax)◦2 + (Bx)◦2

2π

The periodogram points of the bootstrap draw (2.14) take the corresponding form

(Ax∗)◦2 + (Bx∗)◦2

2π

where

Ax∗ = AAW (A+B)x = PAx (A-2a)

Bx∗ = BBW (B −A)x = PBx, (A-2b)

the second equalities defining matrices PA and PB. Replacing W by W̃ where W̃ is defined
following (2.4), note that these formulae become P̃A = AAW̃A and P̃B = BBW̃B. Referring
to the formula in (2.7), we deduce that, except for the cases j = 0 and j = n/2 (n even), the rows
of the matrix AAWA have three possible forms. If wj = wn−j = 1, rows j and n− j match rows
j and n − j of A. If wj = wn−j = −1, rows j and n − j match the corresponding rows of −A.
And, if the signs of wj and wn−j are different, the corresponding pairs of rows are zero. Rows 0
and n/2 (n even) match the corresponding rows of A or −A, with the signs taken from w0 and
wn/2 (n even), respectively.

On the other hand, the matrix AAWB has zeros for rows j and n− j if wj = wn−j = ±1. It
has jth and n− jth rows matching those of B, if wj = 1 and wn−j = −1, and matching those of
−B if wj = −1 and wn−j = 1. Rows 0 and n/2 (n even) are zero, matching those of B. Notice
how the zero rows arise in complementary positions in the two matrices.

Putting these results together, we can set out the following table where the notation identifies
the jth rows of the matrices in question, for j 6= 0 and j 6= n/2 (n even), depending on the signs
of the Rademacher pairs:

{PA}j· =


{A}j· if wj = wn−j = 1,
{−A}j· if wj = wn−j = −1,
{B}j· if wj = 1 and wn−j = −1,
{−B}j· if wj = −1 and wn−j = 1.

(A-3)

The last two of these cases do not arise when wj is replaced by w̃j . Also, {PA}0· = w0{A}0·,
and {PA}n/2· = wn/2{A}n/2· (n even).
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The corresponding analysis of the matricesBBWA andBBWB, making use of (2.8), yields

{PB}j· =


{B}j· if wj = wn−j = 1,
{−B}j· if wj = wn−j = −1,
{−A}j· if wj = 1 and wn−j = −1,
{A}j· if wj = −1 and wn−j = 1

(A-4)

and also {PB}0· = 0′, and {PB}n/2· = 0′ (n even).
After squaring has eliminated the negative signs, the implication of (A-3) is that the elements

of (PAx)◦2 match either the corresponding elements of (Ax)◦2 or the corresponding elements of
(Bx)◦2 , depending on whether the Rademacher pairs match or differ. (They of course cannot
differ for P̃A and P̃B.) The elements of (PBx)◦2 on the other hand, according to (A-4), are
the complementary cases from (Bx)◦2 and (Ax)◦2. In other words, if an element of (PAx)◦2

matches that of (Ax)◦2, the corresponding element of (PBx)◦2 matches that of (Bx)◦2. If an
element of (PAx)◦2 matches that of (Bx)◦2, the corresponding element of (PBx)◦2 matches that
of (Ax)◦2. It follows that

(PAx)◦2 + (PBx)◦2 = (Ax)◦2 + (Bx)◦2

and the theorem follows directly.

Proof of Corollary 2.1. The DFT of (2.11) is identical with z∗ in (2.10), noting that

(A+ iB) [(AWA+BWB) + i(AWB −BWA)]

= (AA+BB)WA+ i(AA+BB)WB

= W (A+ iB).

Proof of Theorem 2.3. The result E∗(x∗i ) = 0 is immediate since E∗(wk) = 0. Using formula
(2.18), note that for i ≥ m

x∗ix
∗
i−m =

n−1∑
j=0

n−1∑
k=0

n−1∑
j′=0

n−1∑
k′=0

wkwk′ΥijkΥi−m,j′k′xjxj′ . (A-5)

Since E∗(wkwk′) =

{
1, k = k′

0, k 6= k′
, we have

E∗(x∗ix
∗
i−m) =

n−1∑
j=0

n−1∑
j′=0

xjxj′
n−1∑
k=0

ΥijkΥi−m,j′,k

=

n−1∑
j=m

xjxj−m

n−1∑
k=0

ΥijkΥi−m,j−m,k +

n−1∑
j=0

∑
j′ 6=j−m

xjxj′
n−1∑
k=0

ΥijkΥi−m,j′,k

=
1

n

n−1∑
j=m

xjxj−m. (A-6)

Here, the third equality makes use of the facts that

n−1∑
k=0

ΥijkΥi−m,j−m,k =
1

n2

n−1∑
k=0

[
cos2(2π(i− j)k/n) + sin2(2π(i− j)k/n)

]
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− 2
1

n2

n−1∑
k=0

cos(2π(i− j)k/n) sin(2π(i− j)k/n)

=
1

n
(A-7)

in view of (2.19) and cos2 + sin2 = 1, and also that for each i and j′ 6= j −m,
n−1∑
k=0

ΥijkΥi−m,j′k =
n−1∑
k=0

cos(2π(i− j)k/n) cos(2π(i−m− j′)k/n)

+

n−1∑
k=0

sin(2π(i− j)k/n) sin(2π(i−m− j′)k/n)

−
n−1∑
k=0

cos(2π(i− j)k/n) sin(2π(i−m− j′)k/n)

−
n−1∑
k=0

sin(2π(i− j)k/n) cos(2π(i−m− j′)k/n)

=

n−1∑
k=0

cos(2π(m− j + j′)k/n)−
n−1∑
k=0

sin(2π(2i−m− j − j′)k/n)

= 0, (A-8)

noting that m− j + j′ and 2i−m− j − j′ are always nonzero integers.
Proof of Theorem 2.4. Let a0, . . . ,an−1 and b0, . . . , bn−1 denote the columns of symmetric
matrices A and B respectively. Since W (omitting for clarity the subscript denoting the draw)
is diagonal,

R = (A−B)WA+ (A+B)WB

=

n−1∑
j=0

wjDj

where
Dj = (aj − bj)a′j + (aj + bj)b

′
j , j = 0, . . . , n− 1

are n× n matrices. The ith element of x∗ is therefore

x∗i =
n−1∑
j=0

wjgji (A-9)

where gji is the ith element of
gj = Djx (n× 1),

conditionally fixed under the bootstrap distribution. Since

wrj =

{
1 r even
wj r odd,

for r any positive integer, there exists the decomposition

x∗ri = A
(r)
i +

n−1∑
j=0

wjB
(r)
ij +

n−1∑
j=0

∑
k 6=j

wjwkC
(r)
ijk (A-10)
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where A(r)i = E(x∗ri ) consists of the sum of those terms (if any) containing only even powers of

w0, ...., wn−1, the B
(r)
ij are the sums of the terms (if any) containing an odd power of either wj or

wk, and C
(r)
ijk is the sum of those terms (if any) containing odd powers of both wj and wk. Since

E(wj) = 0, it follows that when wa0, . . . , wa,n−1, wb0, . . . , wb,n−1 are drawn independently,

E∗ (x∗raix
∗s
bk) = A

(r)
i A

(s)
k , i, k = 0, . . . , n− 1

and the conclusion follows. For the case where wj is replaced by w̃j as in (2.5), the argument is
amended only by noting that the decomposition of (A-10) assigns the terms differently, and the
sums run over j = 0, ...., n/2− 1 (n even) and j = 0, ...., (n− 1)/2 (n odd).

Proof of Theorem 2.5 (i) rij =
∑n−1

k=0 wkΥijk where E∗(wk) = 0, E∗(w2k) = 1 and E∗(wkwk′) = 0
for k 6= k′. Hence, E∗(rij) = 0 and E∗(r2ij) = 1/n as a consequence of (A-7) with m = 0. The
theorem follows since the terms of the sum are independent with bounded variances. (ii) Consider
a finite collection of row coordinates j1, . . . , jm with associated fixed finite weights α1, . . . , αm.
The random variable

√
n

m∑
p=1

αprijp =
√
n

n−1∑
k=0

wk

m∑
p=1

αpΥijpk,

has mean zero and variance n
∑n−1

k=0(
∑m

p=1 αpΥijpk)
2 = O(1), and is asymptotically Gaussian by

the argument for part (i). The distribution of the m-fold collection
√
nrij1 , . . . ,

√
nrijm therefore

becomes multivariate Gaussian as n→∞ by the Cramér-Wold theorem (Davidson 1994, Theorem
25.5). The Gaussianity of the limit sequence as a whole, subject to a mild consistency condition
that certainly holds in the present case, is a consequence of the Kolmogorov consistency theorem
(Davidson 1994, Theorem 12.4).

Proof of Theorem 2.6. The terms Υijk in (2.18) are bounded absolutely by 2/n. Hence,
since E∗(wk) = 0, rij = Op(n

−1/2) as n → ∞, where this rate of convergence holds almost
surely with respect to the distribution of the bootstrap draws by the normal number theorem.
With the bootstrap draw conditionally fixed, the marginal Gaussianity of the quantities x∗i for
each i follows under appropriate regularity conditions by a central limit theorem for dependent
triangular arrays such as de Jong (1997) Theorem 2. The moment and dependence properties
of the data are all that matter for this result. The bounded weights defined in (2.18), treated
as conditionally fixed, are absorbed trivially by choice of the scaling constants specified in the
cited theorem. A linear combination of any finite collection of points from a bootstrap draw,
say x∗ip = r′ipx for p = 1, . . . ,m with finite weights {α1, . . . , αm}, is also a linear combination∑m

p=1 αpr
′
ip
x of x with compound weights summing to either

∑m
p=1 αp or −

∑k
p=1 αp by Theorem

2.1. The weights are bounded absolutely by n−1/2
∑m

p=1 |αp| < ∞. The limiting Gaussianity of
the finite dimensional distributions of the sequence, and hence the limiting Gaussianity of the
sequence as a whole, follows by the same arguments as in Theorem 2.5.

Proof of Theorem 2.7 Since E∗(x∗i ) = 0, (2.24) implies

E∗(γ̂∗nm) =
1

n

n−1∑
i=m

E∗(x∗ix
∗
i−m) =

n−m
n2

n−1∑
j=m

xjxj−m
pr→ γm

as in (2.26), where the convergence in probability is with respect to the distribution of the sample
data as n→∞. This is a standard application of the law of large numbers (ergodic theorem) in
view of the fact that E(xj) = 0 by assumption.
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Next, consider the error of estimate under the bootstrap distribution. This takes the form

γ̂∗nm − E∗(γ̂∗nm) =
1

n

n−1∑
i=m

(
x∗ix

∗
i−m − E∗(x∗ix

∗
i−m)

)
=

1

n

n−1∑
i=m

n−1∑
j=0

n−1∑
j′=0

xjxj′Gim,j,j′ (A-11)

where

Gim,j,j′ =
n−1∑
k=0

∑
k′ 6=k

wkwk′ΥijkΥi−m,j′,k′ .

Note how these terms complement (A-6) with the cases k 6= k′.
Since E∗(wkwk′wlwl′) = 1 if either k = l and k′ = l′ or k = l′ and k′ = l, and otherwise is

zero, substituting the trigonometric identities corresponding to (A-7) and (A-8) yields

E∗(G2im,j,j′) =
n−1∑
k=0

∑
k′ 6=k

n−1∑
l=0

∑
l′ 6=l

E∗(wkwk′wlwl′)ΥijkΥi−m,j′,k′ΥijlΥi−m,j′,l′

=

n−1∑
k=0

Υ2
ijk

n−1∑
l=0

Υ2
i−m,j′,l +

n−1∑
k=0

ΥijkΥi−m,j′,k

n−1∑
l=0

Υij′,lΥi−m,j,l

=
1

n2
.

On the other hand, for p 6= i and/or q 6= j, q′ 6= j′,

E∗(Gim,j,j′Gpm,q,q′) =

n−1∑
k=0

∑
k′ 6=k

n−1∑
l=0

∑
l′ 6=l

E∗(wkwk′wlwl′)ΥijkΥi−m,j′,k′ΥpqlΥp−m,q′,l′

=
n−1∑
k=0

ΥijkΥpqk

n−1∑
l=0

Υi−m,j′,lΥp−m,q′,l +
n−1∑
k=0

ΥijkΥp−m,q′,k

n−1∑
l=0

ΥpqlΥi−m,j′,l

= 0

holds similarly to (A-8), in each case. The variance of (A-11) under the bootstrap distribution
therefore takes the form

E∗
(
γ̂∗nm − E∗(γ̂∗nm)

)2
=
n−m
n2

(
1

n

n−1∑
j=0

x2j

)2
= Op(n

−1)

corresponding to (2.27), where the stochastic order of magnitude is defined with respect to the
distribution of the sample data, and follows from the assumption that the series is stationary and
ergodic with finite second moment.

Proof of Theorem 3.1 It is suffi cient for the specified weak limit to hold that (a) the term√
n
∑n

t=1 lntu
∗
nt from (3.7) converges to a normal limit with zero mean and variance V , and (b)

V̂ ∗n →pr V .
Consider for any 0 ≤ i ≤ n − 1 u∗i , the i

th bootstrap disturbance obtained from the sample
least squares residuals û. Letting r′i denote the i

th row of R,

u∗i = r′iû = r′iu− r′iX(X′X)−1X′u
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= r′iu−
r′iX√
n

(X′X

n

)−1X′u√
n

(A-12)

Noting that the elements of ri are Op(n−1/2) as shown in Theorem 2.6, the right-hand side terms
in (A-12) are Op(1) and asymptotically jointly Gaussian under our assumptions. According to
Theorems 2.3 and 2.7 and the assumptions,

γ∗nm = E∗(u∗iu
∗
i−|m|) =

1

n

n−1∑
j=|m|

ûj ûj−|m|

=
1

n

n−1∑
j=|m|

ujuj−|m| +Op(n
−1)

pr→ γm. (A-13)

Let Γ (n×n) denote the Toeplitz matrix with elements γm on the mth diagonals and let l (n×1)
be defined by (3.2). It follows from (A-13) that

nE∗(l′u∗u∗′l) = nl′Γl+Op(n
−1).

and plimnl′Γl = V , as defined in (3.5). It follows from Theorem 2.6 with the Cramér and Slutsky

Theorems (Davidson 1994, Th.18.10 and Th.22.14) that
√
nl′u∗

d→ N(0, V ), the convergence
holding with probability 1 under the bootstrap distribution.

Next, consider (b). The variance of
√
n
∑n

t=1 lntu
∗
nt under the bootstrap distribution, condi-

tional on the sample, is

V ∗n =
∑n−1

m=1−n
γ∗nmn

∑n

t=|m|+1
lntln,t−|m|

where γ∗nm is the quantity defined in (A-13) so that plim γ∗nm = γm for fixed m ≥ 0. We show
that plimV ∗n = V defined by (3.5), where the probability limit of the conditional mean is taken
with respect to the sampling distribution of the data as n→∞.

For clarity of notation write Qnm = n
∑n

t=|m|+1 lntln,t−|m| and Q̄m = plimQnm, which is
finite by the assumption of weak dependence (Assumption 1). Then let V ∗n = T1 + 2T2 where
for some fixed M < ∞, T1 =

∑M
−M γ∗nmQnm and T2 =

∑n−1
m=M+1 γ

∗
nmQnm. It is easily seen

that plimT1 =
∑M
−M γmQ̄m. Next, let γ

∗
nm = γm + umn and Qnm = Q̄m+ vnm where γm =

O(m−1−δγ ) by Assumption 1, with δγ > 0 and Q̄m = O(m−1−δQ) with δQ > 0. umn = O(n−1/2)
and vmn = O(n−1/2) are the errors of estimate of the two components, and are independently
distributed, by Assumption 3, with means of zero. Then, we find

T2 =
∑n−1

m=M+1
unmvnm +O(M−min{δγ ,δQ}) (A-14)

where the products unmvnm have means of zero and are O(n−1), which implies that the first term
of (A-14) is o(1) as n→∞. Hence, T2 can be made as small as desired by taking M and n large
enough.

By contrast the expectation of (3.8) under the bootstrap distribution conditional on X is

E∗(V̂ ∗n ) =

Mn∑
m=−Mn

wmnγ
∗
nmn

n∑
t=|m|+1

lntln,t−|m|.

Given the probability limits of the γ̂∗nm according to Theorem 2.7, an appropriate choice of kernel
weights such that wnm → 1 for fixed m ensures that plim V̂ ∗n = V as required.
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Proof of Theorem 3.2 The assumptions of Theorem 2.6 are suffi cient for the operation of the
requisite functional central limit theorem for dependent processes to hold for the FWB process
{u∗t }. The finite dimensional distributions of the limit process Y ∗∗ are Gaussian, in view of
Theorem 2.6 and the fact that Z∗ is an independent Gaussian drawing, unrelated to sample size.
Tightness of the limit distribution follows from the assumptions, since the bootstrap series are
stationary and have autocorrelation structure matching that of the original data in the limit
by Theorem 2.7, Therefore, Y ∗∗ is continuous with probability 1. The augmentation by the
independent shift variable does not affect these features of the process.

It remains to establish the covariance properties of the augmented limit process. It is required
that (a) for 0 ≤ r < s ≤ 1, E(Y ∗∗(s)− Y ∗∗(r))2 = ω2(s− r), and (b) non-overlapping increments
are uncorrelated, and hence independent. We show that these properties hold for the process
Y ∗∗n apart from components that are of small order as n→∞. The main step is to note that an
arbitrary random variable added to each coordinate u∗n1, . . . , u

∗
nn automatically defines the sample

mean of the series. Hence there always exists a companion process {v1, . . . , vn}, having mean
zero, such that u∗nt = vt− v̄n where v̄n = n−1

∑n
t=1 vt. The series {vt} can be constructed to share

all the properties of {u∗nt} apart from the centering, in particular the asymptotic Gaussianity and
the autocorrelation structure. In particular,

1

n
E

( [ns]∑
t=[nr]+1

vt

)2
= ω2(s− r) +O(n−1) (A-15)

where the order of magnitude of the remainder reflects the fact that the tail autocovariances are
summable. Thus,

1

n
E
(
y∗∗[ns] − y

∗∗
[nr]

)2
=

1

n
E

( [ns]∑
t=[nr]+1

(vt − v̄n + n−1/2ωZ∗)

)2

=
1

n
E

( [ns]∑
t=[nr]+1

vt − ([ns]− [nr]) v̄n + n−1/2 ([ns]− [nr])ωZ∗
)2

= ω2(s− r) +O(n−1). (A-16)

To show the last equality of (A-16), note that of the nine terms represented by the second member,
the first square term is (A-15) and the other two squares are

([ns]− [nr])2

n2
E(v̄2n) = ω2(s− r)2 +O(n−1)

and
([ns]− [nr])2

n2
ω2E(Z∗2) = ω2(s− r)2,

while two of the cross-products have the form

− [ns]− [nr]

n2
E

( n∑
t=1

vt

[ns]∑
t=[nr]+1

vt

)
= −ω2(s− r)2 +O(n−1)

and the other four are zero, since Z∗ and v1, . . . , vn are mutually independent.
To show that property (b) holds for Y ∗∗n , the covariance of non-overlapping intervals with

r1 < s1 ≤ r2 < s2 is
n−1E(y∗∗[ns1] − y

∗∗
[nr1]

)(y∗∗[ns2] − y
∗∗
[nr2]

)2 = O(n−1),
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noting the cancellation of the terms 2ω2(s1 − r1)(s2 − r2) and −2ω2(s1 − r1)(s2 − r2) similarly
to (A-16). This completes the proof.

Proof of Theorem 5.1. Similarly to the proof of Theorem 2.2, the cross-periodogram points of
X = (x1,x2) can be written as the pair of vectors (2π)−1z1 ◦ z†2 and (2π)−1z2 ◦ z†1 where the
zj are defined by (2.9) with appropriate substitutions, ‘†’denotes the complex conjugate and ‘◦’
denotes the element-wise Hadamard product of the two vectors. Thus,

z1 ◦ z†2 = Ax1 ◦Ax2 +Bx1 ◦Bx2 + i(Bx1 ◦Ax2 −Ax1 ◦Bx2) (A-17)

and z2◦z†1 is the corresponding expression with reversed sign of the imaginary component. Then,
from (5.1) using (A-2a) and (A-2b), the cross-periodogram points of the bootstrap draw take the
forms of

PAx1 ◦ PAx2 + PBx1 ◦ PBx2 + i(PBx1 ◦ PAx2 − PAx1 ◦ PBx2) (A-18)

and of its complex conjugate.
We now show, reprising the arguments in the proof of Theorem 2.2, that both the real and the

imaginary parts of (A-18) are identical with those of (A-17). Consider the real terms first. Recall
that the rows of PA follow the scheme in (A-3) and the rows of PB follow (A-4) similarly. The
sign changes disappear in the Hadamard products, similarly to the cases of the squares except
that here the signs are not always positive. What matters is that the signs of the elements of
Ax1 ◦Ax2 must match those of (−A)x1 ◦ (−A)x2, and similarly for B. We therefore conclude
that

PAx1 ◦ PAx2 + PBx1 ◦ PBx2 = Ax1 ◦Ax2 +Bx1 ◦Bx2
This result holds whether or not x1 = x2, which was the case shown previously.

Now consider the imaginary parts in the light of tables (A-3) and (A-4). We find that the
elements of the vectors PBx1 ◦ PAx2 and PAx1 ◦ PBx2 match those of the respective vectors
Bx1◦Ax2 and Ax1◦Bx2 when the signs of the Rademacher pairs agree. When the Rademacher
pairs take opposite signs, the corresponding elements of PBx1 ◦PAx2 and PAx1 ◦PBx2 match,
respectively, those of −(Ax2 ◦Bx1) and −(Bx1 ◦Ax2). It follows that

PBx1 ◦ PAx2 − PAx1 ◦ PBx2 = Bx1 ◦Ax2 −Ax1 ◦Bx2. (A-19)

Since the same equalities holds for the complex conjugate, which merely changes the sign on
both sides of (A-19), the proof is complete.

Proof of Theorem 5.2. This follows immediately by the arguments of Theorem 2.3. Simply
note that

x∗pi =
n−1∑
j=0

n−1∑
k=0

wkΥijkxpj

for p = 1 and p = 2. Accordingly, replace xjxj′ by x1jx2j′ in all the expressions where the latter
product appears, and likewise replace x∗jx

∗
j−m by x∗1jx

∗
2,j−m and xjxj−m by x1jx2,j−m. With

these amendments, the derivation proceeds unchanged. Then, interchange subscripts 1 and 2 for
the second part of the theorem.

A.2 Warp-speed Monte Carlo

For each of K Monte Carlo replications, the procedure is to generate a sample data set, calculate
and store the test statistic, and then take a single bootstrap draw, compute the matching test
statistic from the bootstrap sample and also store this. At the termination of the experiment,
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sort the latter set and for k = 1, . . . ,K estimate the p-value by the position of the kth sample
statistic in the bootstrap distribution. The empirical rejection rate in an α-level test is estimated
by

P̂ (α) = K−1
K∑
k=1

I(pk ≤ α) (A-20)

where I(.) denotes the indicator function and pk the warp-speed estimator of the p-value in the
kth Monte Carlo replication.

The validity of the warp speed experiment depends on the fact that the conditional bootstrap
draws have a common unconditional distribution. Formally, let ξ represent the Monte Carlo
replicate and let ζ represent the random drawing that conditionally generates the bootstrap data.
Let t = t(ξ) denote the sample statistic with distribution F (x) = P (t ≤ x) and t∗ = t∗(ξ, ζ) the
bootstrap statistic. The conventional bootstrap estimates the random measure Fξ(x) = P (t∗ ≤
x|ξ) and locates t in this distribution to estimate the p-value, defined either as

g(t) = 1− Fξ(t) (A-21)

in the case of a one-tailed test, or as

g(t) = 2 min(Fξ(t), 1− Fξ(t)) (A-22)

in the case of a two-tailed test. If F and Fξ match and are continuous, then g is uniform on
[0,1]. By contrast, the warp-speed Monte Carlo procedure estimates the distributions F and
F ∗ = E(Fξ). The warp-speed p-values are g∗(t), defined by (A-21) or (A-22) with F ∗ replacing
Fξ in the formulae. If the bootstrap is valid and Fξ does not depend on ξ, F ∗ and Fξ match and
hence F and F ∗ match. If Fξ = F with probability 1 and F is continuous then g∗ is uniform on
[0, 1].

The one caveat is that it is not impossible to have F matching F ∗ in spite of bootstrap failure
with positive probability, if the deviations of Fξ from F average to zero. For example, we cannot
predict how the warp-speed method might perform if the data have no variance, so that the
distribution depends on ξ even in the limit (Athreya 1987). Excepting such cases, warp-speed
experiments are a reliable technique of bootstrap evaluation.

A.3 Constructing the Surrogate Mean

Sets of Monte Carlo experiments were run, with different sample sizes and different patterns of
autocorrelation, using data generated from the model

Yt = µ+ Vt, Vt = ρVt−1 + Ut, Ut ∼ NI(0, 1), t = 1, . . . , n (A-23)

where the null hypothesis µ = 0 is true with various values assigned to ρ and n, 24 cases in total
represented by the combinations of n = {50, 100, 200, 400, 800, 1600} and ρ = {0, 0.3, 0.6, 0.9}.
For each of these cases, a sequence of warp speed Monte Carlo experiments with K = 5000
replications was run on AFB tests of the null hypothesis µ = 0, as described in Section 3. For
each replication an HAC variance estimator ω̂2 was computed from the mean deviations Yt − Ȳ
using the Bartlett kernel with bandwidth chosen automatically by the Newey and West (1994)
plug-in method. The AFB test was then implemented with surrogate mean set to Riω̂2Z∗/

√
n

where Ri is a trial correction factor. A sequence of such experiments for i = 0, 1, 2, . . . was run
with Ri = 1.1Ri−1, starting with R0 = 0.5.

For each experiment the Cramer-von Mises goodness-of-fit criterion

CvM = K−1
K∑
k=1

(
P̂ (k/K)− k/K

)2
(A-24)
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was computed for the p-value distribution where P̂ (α) is defined by (A-20). The sequence was
terminated at the point where CvM was observed to increase at three successive grid points,
and the value of R yielding the minimum of CvM over the grid was recorded. These calibration
experiments yielded 24 triples, (R,n, ρ).

The problem is to construct a response surface making use of the data available in a practical
testing situation. The residual variance of the regression, σ̂2V = n−1

∑n
t=1 V̂

2
t , would estimate

σ2U/(1−ρ2) were the data actually generated by (A-23). Measuring scale by the residual variance
σ̂2U from a sieve autoregression of V̂t,9 a feasible measure of autocorrelation of V̂t is 10

η = σ̂2V /σ̂
2
U . (A-25)

5000 replications of σ̂2V and σ̂
2
U are generated from the calibration runs, and their averages were

used to compute η. A trans-log regression fitted to the data points (R,n, η) yields

R̂(n, η) = exp{4.33337− 2.07486 log n+ 0.3395(log n)2 − 0.01868(log n)3

+ 4.05463 log η + 0.56462(log η)2 − 0.30931(log η)3

− 1.08039 log n log η + 0.01368 log n(log η)2

+ 0.07224(log n)2 log η}. (A-26)

In experiments with the AFB the surrogate mean is generated as R̂(n, η)ω̂2Z∗/
√
n with η com-

puted by (A-25) from the sample residuals and their sieve-AR filtered counterpart.
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