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Abstract

This paper derives a simple sufficient condition for strict stationarity in the ARCH(c0)
class of processes with conditional heteroscedasticity. The concept of persistence in these
processes is explored, and is the subject of a set of simulations showing how persistence
depends on both the pattern of lag coefficients of the ARCH model and the distribution of
the driving shocks. The results are used to argue that an alternative to the usual method of
ARCH/GARCH volatility forecasting should be considered.

1 Introduction

The ARCH and GARCH and related classes of volatility models are employed to exploit the fact
of local persistence in the volatility of returns processes, so as to predict volatility a number of
steps into the future. Notwithstanding the large volume of research that has been devoted to
understanding these models since their inception, there remains a degree of mystery surrounding
their dynamic properties, and hence the degree to which they assist the effective forecasting of
future volatility. Analogies drawn from the theory of linear processes in levels have sometimes
been invoked inappropriately in attempts to explain their behaviour, as has been detailed in
Davidson (2004) among other commentaries.

This paper considers the ARCH(oco) model of an uncorrelated returns sequence {&;} in which,

for —oo <t < o0,
§ = Vhwz
where z; ~1.i.d.(0,1) and

he=w+ Y 0;6 (1.1)
j=1

with w >0, 0; > 0 for all j and S = Zj; ; < co. Interest focuses on the three salient features
of models of this type: the value of S; the decay rate of the lag coefficients; and the distribution of
z¢. Having regard to the first of these features, it is well known that S < 1 is a necessary condition
for covariance stationarity. Unless this condition applies it is inappropriate to speak of h; as the
‘conditional variance’ although it is always well-defined as a volatility indicator. In respect of the
second feature, it is also well known that the Bollerslev (1986) GARCH class of models imposes
exponential decay rates on the coefficients, and the HYGARCH class due to Davidson (2004)
which includes the FIGARCH model of Baillie et al. (1996), embodies hyperbolic decay rates.
In respect of the third, the disturbances are often specified to be Gaussian, even though it is a
well-known stylized fact that the residuals from estimated GARCH models in financial data can
exhibit excess kurtosis.



The question of strict stationarity in covariance nonstationary processes was first examined
by Nelson (1990). In the GARCH(1,1) model

hi =+ af? | + Bhy1 (1.2)

which has the form of (1.1) with w = /(1 — ), and 6; = a3’ *so that S = a/(1 — ), he showed
the necessary and sufficient condition for strict stationarity to be

Elog(azi + ) < 0. (1.3)

Subsequent work on this problem notably includes Bougerol and Picard (1992) who consider the
GARCH(p, q) extension of Nelson’s result, and emphasize the role of the negativity of the top
Lyapunov exponent of a certain sequence of random matrices. Kazakevi¢ius and Leipus (2002)
show that a necessary condition for a stationary solution in the ARCH(c0) class is

log S < —Elog(#3) (1.4)

while Douc et al. (2008) prove a sufficient condition of the form

E|z1\2p29§ < 1, some p € (0,1]. (1.5)
j=1

In this paper we consider conditions for strict stationarity, but also the wider question of the
persistence of stationary volatility processes; specifically, how long episodes of high volatility tend
to persist, once initiated, and hence how far into the future variations in volatility may feasibly
be forecast. This notion of persistence, which is independent of the existence of moments, is
made precise in Section 3, where we define it in terms of the (in)frequency of crossings of the
median in successive steps. Thus, a process which crosses the median at most a finite number
of times in a realization of length T, as T — o0, is necessarily nonstationary, either converging
or diverging. At the other extreme, a serially independent process crosses the median with
probability 1/2 at each step, by construction. Conditions for strict stationarity of a process in
effect define the boundary beyond which persistence becomes divergence, and there is no reversion
tendency defining a stationary distribution. In Section 2, a decomposition of the ARCH(c0)
equation is introduced which simplifies the problem of seeing how persistence and stationarity
depends on the various model features. We use this representation to derive a new sufficient
condition for strict stationarity. In the GARCH(1,1) case where the stationarity boundary in the
parameter space is known, we show numerically that our condition is not too far from necessity,
in contrast to a strong condition such as (1.5). The properties of these models are shown to be
the result of rather complex interactions between the shock distribution and the linear structure.
Section 4 reports a comprehensive set of simulations, covering covariance stationary, strictly
stationary and nonstationary cases. Section 5 considers the implications of our analysis for the
optimal forecasting of volatility, and investigates alternatives to the minimum mean squared
error criterion, which is conventional but not necessarily optimal in the context of highly skewed
volatility processes. Section 6 contains concluding remarks, and proofs of the propositions stated
in Section 2 are gathered in an appendix.

2 Stationarity and Persistence in the ARCH(co0) Class

Write (1.1) in the alternative form

he=w+ > bjhij (2.1)

Jj=1



where

Vi = 9jzt2—j- (2.2)
In words, we can describe this as an infinite-order linear difference equation with independently
distributed random coefficients.

To focus attention on the persistence properties of (2.1), it is helpful to apply a variant of
the so-called Beveridge-Nelson (1981) decomposition (henceforth, BN), which was introduced as
a tool of econometric analysis by Phillips and Solo (1992). The BN decomposition is the easily
verified identity for polynomials A(z) = Y2, A;2? having the form

Az) = A1) + X (z)(1 — 2)

where )\; = —Zzozj +1 - In the present application we consider, for each ¢, the stochastic
polynomial in the lag operator

o
V(L) = Z%‘tﬂ
=0
where the coefficients are given by (2.2) with g, = 6y = 0. The BN form of this expression is

(L) = ¥y + 93 (L)(1 - L)
where

Uy =1y(1) = Z%‘t (2.3)
j=1

and note that
E(T;) =S. (2.4)

The coefficients of 1} (L) are 15, = 0 and, for k¥ > 1,

Yie=— Y 01z <0, (2.5)
I=k+1
Accordingly write (2.1) as
ht =w+VYihe 1 + Ry (2.6)
where -
Ry =) Al (2.7)
k=1

Note that if {h;} is a stationary process, the terms Ah; are negatively autocorrelated and their
contribution to the dynamics is therefore high-frequency, in general. That the longer-run per-
sistence and stationarity properties of the process depend critically on the distribution of the
sequence {¥;} is shown by the following proposition. (Proofs are gathered in the appendix.)

Proposition 2.1 If the stochastic process {h}}32_., where

satisfies a sufficient condition for P(hf < oco) =1, then P(hy < o0) = 1 also holds for (2.1).

With this consideration in mind we give the following result, establishing a sufficient condition
for stationarity of {h;}. For convenience of notation, let the symbol ¢ denote the constant
E(log ¥¢), not depending on ¢ since {z} is i.i.d.
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Figure 1: Gaussian GARCH(1,1) model: («,3) pairs where ( = 0 and stationarity boundary
points (Nelson 1990).

Proposition 2.2 If
(<0 (2.9)

then {hf}2 defined by (2.8) is strictly stationary and ergodic.

—00

Sufficiency of the covariance stationarity condition S = E(¥;) < 1 follows from Proposition 2.2
by the Jensen inequality.

Consider this result in the case of the GARCH(1,1) process (1.2). This is a special case
because, uniquely among ARCH(c0) processes, it can be expressed exactly in the form (2.8). In
other words, we may write the model as

he =7+ Ulhi (2.10)

where \III = az? ; + B and v = w(1 — B). Proposition 2.2 can be applied directly to (2.10) to
obtain condition (1.3), which Nelson (1990) shows to be necessary as well as sufficient. However,
writing the model in its ARCH(o0) representation with

Uy = azi g +afzl oy +af’z s+

as in (2.3), we obtain
¢ = E(log ¥;) = Ellog(az?_; + Y 1)]. (2.11)

In the case 8 = 0, so that S = a, the conditions (1.3) and (2.9) match. They also match the
necessary condition (1.4) which for the GARCH(1,1) case becomes

Elog(az?) < log(1— B).

Also, letting 5 — 1 while letting « tend to zero at such a rate as to fix the sum of the coefficients
at S = a/(1 — ), note that condition (2.9) in case (2.11) implies the covariance stationarity
condition S < 1. This follows because ¥; — S almost surely as a — 0 by the strong law of large
numbers, noting that it is a weighted average of i.i.d.random variables with means of unity and
weights with finite sum S.



For the intermediate cases with 0 < 8 < 1, conditions (1.3) and (2.9) do not match but
can be compared, giving an opportunity to verify the sharpness of the latter condition. Some
numerical experiments with Gaussian shocks are illustrated in Figure 1, showing a-values at
which ¢ ~ 0 for § = 0,0.1,0.2,...,0.9. The mean is estimated in each case as the average of
20,000 values of log(¥;) where U, is calculated from a generated i.i.d. Gaussian sequence {z;} and
the recursion ¥; = az? | + B8P, 1. The actual stationarity boundary points from (1.3) are shown
for comparison, as plotted in Figure 1 of Nelson (1990).! By comparison, note that the sufficient
condition (1.5) of Douc et al. (2008) is substantially stronger than the bound of Proposition
2.2. For the cases illustrated in Figure 1, the boundary value of S = «/(1 — ) ranges from 1 at
B =09 up to 2.1 at B = 0.1. In the Gaussian case, a lower bound on E|z|? is 1/2/7 = 0.798
at p = 0.5, whereas S is a lower bound on the second factor of condition (1.5). For most of these
cases, there is no value p € (0,1] close to meeting the stated condition.

The way in which these conditions depend on the distribution of z? can be appreciated by
considering Figures 2-4, which show simulated paths (7" = 5000, with 10,000 presample steps) for
three cases of the IGARCH(1,1) model, with w = 1 and 8 = 0.9 in each case. These are among
the models studied in Section 4 of the paper. The sole difference between the three cases comes
from the shock distributions, which are, respectively, the Student ¢ with 3 degrees of freedom, the
Gaussian, and the uniform, in each case normalized to zero mean and unit variance. Estimates
of —E(log2?) (computed as averages of samples of size 20,000) are, respectively, 2.02 for the
Student(3), 1.25 for the Gaussian, and 0.87 for the uniform case. These may be compared with
log(S) = 0 in the light of the necessary stationarity condition (1.4). The plots show how these
characteristics map into differences in persistence, pointing up the somewhat counter-intuitive
effect of fat tails on persistence

Turning now to the general ARCH(00) case, note first that from (2.4) and w > 0 it follows that
the existence of E(h}) requires S < 1, mirroring the full model (2.6); in the same case, observe
that F(R;) = 0. Except in the case where S < 1, stationarity depends on the distribution of ¥y
and particularly on the degree of positive skewness which, as a moving average of squared shocks,
U, must exhibit in some degree. If the mass of the distribution of ¥y falls below one, the mass of
the distribution of log ¥ is in the negative part of the line. While E(log ¥;) < log S by the Jensen
inequality, the logarithm of a positive and positively skewed random variable has a more nearly
symmetric distribution than the variable itself. Hence, E(logW;) lies correspondingly closer
to Median(log ;) = log(Median(¥;)), which in turn lies further below log S, as the skewness
is greater. In terms of the dynamics of the process, to the extent that U, is symmetrically
distributed about its mean S, and S > 1, the probability that a step is convergent, in the sense
of Proposition 2.1, is relatively small. The stochastic difference equation defined by (2.8) must,
with the complementary probability, behave like either a unit root process with positive drift or
an explosive process. However, skewness will increase the proportion of the realizations falling
below the mean, yielding stationary behaviour on more frequent occasions, compensated by less
frequent but larger excursions above the mean.

In this context, we can appreciate the rather complex role played by the rate of decay of the
nonnegative sequence {6;}52,, given its fixed sum S = E(¥1). First, note that the skewness of
Uy derives from and is bounded by the skewness in the distribution of the increments {z2,s <
0}. Hence, the necessary condition (1.4) can be understood as the minimal condition for non-
divergence when S > 1. This condition would also be sufficient in the case ; = 0 for j > 1 and
S = 6; =1 (the IARCH(1) model), in which case the distributions of ¥; and 27 match. However,
when ¥ is a moving average of the {22} process, the distribution of ¥; depends critically on
the distribution of the lag coefficients. Since the lag weights have a finite sum S, the effects

!Note that the axes in our figure are interchanged relative to Nelson’s figure.
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Figure 2: Simulation of IGARCH(1,1) with 8 = 0.9 and Student(3) shocks.
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Figure 3: Simulation of IGARCH(1,1) with 8 = 0.9 and Gaussian shocks.
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Figure 4: Simulation of IGARCH(1,1) with 8 = 0.9 and uniform shocks



of a longer or shorter average lag are to introduce different degrees of averaging of the squared
shocks. The somewhat complex nature of this relation depends on the existence of a trade-off
between two countervailing effects. Assuming that z; possesses a fourth moment, the central
limit theorem implies that W is attracted to the normal distribution, with skewness increasingly
attenuated, as lag decay gets slower. At the same time, the law of large numbers implies that
the variance of Wy is smaller. The first of these effects is tending to increase the persistence
of the {hf} process, while the second is tending to lower the influence of hf on the volatility
of & = \/Ezt, simply because the noise contribution from z; becomes more dominant as the
variations in h; are attenuated. It is therefore difficult to predict the effect of changing the lag
decay in any given case.

To summarize: if the contribution of the term R; in (2.6) to the persistence properties can
be largely discounted, as we argue, the persistence and stationarity of the ARCH(oco) process
can be related, through the distribution of ¥y, to the three key factors: S, the rate of decay of
the lag coefficients, and the marginal distribution of z;. Greater/smaller kurtosis of z; implies
greater/smaller positive skewness in the distribution of 2%, and hence gives rise to less/more
persistence in {h;}, other things equal. A longer average lag can, counterintuitively, imply a
lesser degree of persistence in the observed process, virtually the opposite of the role of lag decay
in models of levels, where the sum of the lag coefficients is not constrained in the same way, and
shocks are viewed implicitly as having a symmetric distribution. Finally, it is most important
to note that the distinction between exponential and hyperbolic decay rates has quite different
implications here than in models of levels. There is no counterpart to so-called long memory in
levels, otherwise called fractional integration. The dynamics are nonlinear and there is no simple
parallel with linear time series models. The closest analogy is with a single autoregressive root
which in the covariance nonstationary cases is local to unity.

In the remainder of the paper, we report some simulations to throw light on the volatility
persistence properties of alternative simple cases of the ARCH(o0) class. However before that
is possible we need a framework for comparing persistence in general time series processes. The
next section considers some alternative approaches.

3 Measuring the Persistence of Stationary Time Series

The persistence, or equivalently memory, of a strictly stationary process can be thought of heuris-
tically in terms of the degree to which the history of the process contains information to predict its
future path, more accurately than by simple knowledge of the marginal distribution. In the con-
text of univariate forecasting, forecastability must entail that changes in the level of the process
are relatively sluggish. It is customary to measure this type of property with reference to the
autocovariance sequence, but this is not a valid approach in the absence of second moments.

We resort instead to the idea that the key indicator of persistence is the (in)frequency of
reversion towards a point of central tendency. We may formalize this notion by defining the
persistence of an arbitrary sequence {X;}Z ; specifically in terms of the number of occasions
on which the series crosses its median point. The direct measure of this property, which is
well defined and comparable in any sample sequence whatever, is the relative median-crossing
frequency, although it’s more convenient to consider the complementary relative frequency of
non-crossings. We therefore define

Jr =~ Z; T(X; — Mp)(Xs_1 — Myp) > 0) (3.1)

where T is sample length, I(.) denotes the indicator of its argument and M7y is the sample median.
Jr measures the persistence of a sample as a point in the unit interval. When the sequence is



serially independent, Jr — 1/2 as T — oo, almost surely, by construction. In other words, under
independence half of the pairs of successive drawings must fall on different sides of the median on
average. The extreme cases are Jr — 0 (anti-persistence) and Jr — 1 (persistence). In the latter
case, at most a finite number of median crossings as T — oo implies that the sequence either
converges, or diverges to infinity. In neither case can it be strictly stationary. The condition
limsup Jr < 1 is evidently necessary for strict stationarity.

Jr in (3.1) applied to a given sequence measures what we may designate persistence in lev-
els. Persistence in volatility is measured by the statistic analogous to Jr for the squared or
(equivalently) absolute values of the series. From the standpoint of returns it is second order
persistence, so defined, that is our interest in the present analysis. The Jr statistic can be com-
puted for arbitrary transformations of the variables, and a necessary and sufficient condition for
strict stationarity would appear to be that the sequences {Jp,T > 2} are bounded below 1 for
all such variants. However, the two leading cases mentioned appear the important ones in the
usual time series context.

Jr is an ordinal measure that is well defined regardless of the existence of moments and is
also invariant under monotone transformations. Thus, the cases X; = ¢? and X; = |¢,| must
yield the same value of Jr. More interestingly, it is invariant under the operation of forming the
normalized ranks of the series, {z;}_ ;. Letting Fr denote the empirical distribution function

Fr(x) =Ty I(X.<2),

T = FT(Xt) denotes the relative position of X; in the sorted sequence X(yy,..., X(1y. The
sample median of the normalized ranks tends to 1/2 by construction, and when the sample is
large enough, Jr must have the same value for {z;}]_; as it does for the original series {X;}L ;.
The ranks are also invariant under monotone transformations of the series, so yielding the same
values for X; = ¢2 and X; = |¢,| in particular.

Conventional approaches to measuring persistence, for levels or squares/absolute values as the
case may be, are based on the autocovariance sequence. There is particular interest in the property
of absolute summability of this sequence, often called weak dependence, with strong dependence
defining the non-summable case.” Popular persistence measures based on the autocovariance
sequence are the so-called GPH log-periodogram regression estimators (for different bandwidths)
of the fractional persistence parameter d, originally due to Geweke and Porter Hudak (1983). In
principle, GPH estimators provide a test of the null hypothesis of weak dependence, although
they are well-known to be subject to finite sample bias except under the null of white noise.

Our present interest is due to the fact that the long memory paradigm has proved popular in
volatility modelling, and GPH estimation can be validly performed on the normalized ranks of
a series regardless of the covariance stationarity property. The particular problem faced in the
context of nonstationary volatility is the existence of excessively influential outlying observations,
which may invalidate the usual assumptions for valid inference. Rank autocorrelations are free of
these influences and may focus more specifically on measuring persistence as characterized here.
We should emphasize, though, that our present concerns are not primarily hypothesis testing,
but rather to compare and rank different models according to their persistence characteristics.

To calibrate the performance of these alternative measures, we generated some pure fractional
series, otherwise known as I(d) processes, for a range of values of d, in samples of size T' = 10, 000,
with 5000 pre-sample observations. However, the driving shocks were generated to have an a-
stable distribution with o = 1.8 and 8 = 1, where 3 is the skewness parameter. The series

2The well-known difficulty of discriminating between these cases in a finite sample has recently been studied
in detail by one of the present authors, see Davidson (2009).



d Jr d d?

0 | 0498 —0.033 —0.002
(0.004)  (0.061)  (0.065)

0.3 | 0.663 0.281 0.330
(0.009)  (0.061) (0.063)

0.5 | 0.835 0.496 0.544
(0.024)  (0.069) (0.068)

0.7 1 0.948 0.718 0.741
(0.016)  (0.078) (0.075)

0.9 | 0.985 0.921 0.986
(0.006)  (0.013) (0.006)

1 10992 0.985 0.976
(0.004)  (0.056)  (0.065)

Table 1: Persistence measures in a fractional linear time series, T=10,000. (Means of 100 repli-
cations with standard errors in parentheses.)

so constructed do not have second moments and superficially resemble volatility series (after
centring) while having a conventional and well-understood linear dependence structure.

Three statistics were computed for these series: Jp in (3.1), the GPH estimator with band-
width /T for the original series, and also the same GPH estimator for the series of normalized
ranks. The simulations were repeated 100 times and the means and standard deviations (in
parentheses) of the replications are recorded in Table 1, where d® denotes GPH for the ranked
data.

The Jr statistics discriminate rather clearly between the independent case at one end of the
dependence spectrum and the strictly nonstationary unit root at the other. The GPH estimates
for the raw data in fact behave like consistent estimates of d, while the rank correlation-based
estimator appears biased upwards. This is a slightly counter-intuitive result that may or may
not be specific to the example considered. However, in our application we are seeking only to
rank models, in contexts where a parameter d with the usual linear property is not typically well
defined. (In particular, it does not correspond to the ‘d’ appearing in FIGARCH and HYGARCH
models.) We carry this alternative along, chiefly, in a spirit of curiosity about the performance
of a seemingly natural measure in the context of an exploration of "long memory in volatility".

4 Some simulation experiments

In this section, we evaluate and compare the properties discussed in Section 2 in the GARCH(1,1)
and the "pure" HYGARCH/FIGARCH model. The respective data generation processes are of
the form &, = \/hy2; where z; ~1.i.d.(0,1) and either

where § > 0 and 0 < f < min(1,§) or
hi =w+a(l — (1 - L)He? (4.2)

where @ > 0 and 0 < d < 1. (See e.g. Davidson (2004) for the context of these examples.)
In (4.1), which matches (1.2) on setting 6 = a + 3, S = (6 — 8)/(1 — B); whereas in (4.2),
S = a. Setting 6 = 1 and a = 1, respectively, yields the covariance nonstationary IGARCH and
FIGARCH models, whereas setting these parameters strictly less than one implies covariance
stationarity.



The simulations set a range of values for each of the parameter pairs (J,3) and («,d). Co-
variance stationary cases are specified having § = 0.8 and « = 0.8 respectively. We also simulate
nonstationary cases, with d =1, § = 1.2 and o = 1, a = 1.2. For each of these cases, three values
of 8 and three values of d are chosen, being careful to note that the degree of volatility persistence
varies inversely with d (which is of course to be understood as a differencing parameter, not an
integration parameter). For each of the nine parameter pairs selected, three different generation
processes for z; are compared: in decreasing order of kurtosis, these are the normalized Student
t(3), zsiz) = t(3)/ V/3; the standard Gaussian, zg; and the normalized uniform distribution,
2z = V12(U[0,1] — 1/2).

Tables 2 and 3 show the results for samples of size T' = 10,000, with 5000 pre-sample obser-
vations to account for any start-up effects. The reported values are the averages of 100 Monte
Carlo replications of the generation process, with the replication standard deviations shown in
parentheses as a guide to the stability of these persistence indicators. The rows of the tables
show the following: first, the sample mean, sample median, and sample logarithmic mean of the
random sequences {U;}]_; as defined in (2.3); second, the values of Jy for various series defined
in Section 2: the squared returns, the conditional volatilities h;, and also the remainder term
R, = hy — w — Yihy_1. The final columns of the tables show, for an alternative view of the
persistence, the GPH estimators based on the rank correlations of the squared returns.

The salient points of interest in these experimental results seem to us to be the following. First,
the relationships between the proximity of the mean of ¥; (measuring S) to the corresponding
median,? and also the proximity of the logarithmic mean to zero, and the measured persistence
of the squared returns. Second, we note that the measured persistence of R; is in general much
lower than that of h;, confirming the fact that ¥, is the key determinant of persistence. Third,
we draw attention to the relative persistence of the squared returns and of the volatility series. In
the former case, for given d (or «), and given shock distribution, the median-crossing frequencies
(measured by 1 — Jr) actually rise as the lag decay rates decrease, either through J increasing,
or d decreasing. In other words, longer average lags imply less persistence. The reason for this
phenomenon has been discussed in Section 2, and the interesting observation is that this effect
is large enough to counteract the increased persistence in volatility, h;, which is also observed.

Finally, we draw attention to the cases with 6 = 1.2 and o = 1.2, where instances of the
logarithmic mean exceeding zero are recorded. In the GARCH case, there is clearly a close
correspondence between this occurrence and the evidence that stationarity is violated, in the
sense that the median is crossed fewer than ten times in 10,000 steps. The necessary condition
(1.4) can also be checked out. Compare the estimated values of —FE(log2?) for the three dis-
tributions, as reported in Section 2. When S = 3 so that log(S) = 1.09, which is the GARCH
case corresponding to § = 1.2 and § = 0.9, only the uniform distribution case actually violates
the necessary condition, but all the distribution alternatives appear nonstationary. All the HY-
GARCH examples appear stationary, although the uniform case with d = 0.5 appears the closest
to divergent.

The estimates of the fractional integration parameter in the last column of the tables are of
interest in reflecting the persistence measured by Jr quite closely, increasing across the range
with 3, but are non-monotone with respect to d. Observe that, for the normal and uniform cases
in Table 3, the values obtained for d = 0.5 are generally greater than those for either d = 0.9 or
d = 0.1. When the volatility is covariance nonstationary these measures can be quite large, and
when it is strictly nonstationary, they fall close to unity. In a series of insightful papers, Mikosch
and Stdricd (2003, 2004) argue that long range dependence of volatility in financial data should

3The medians are much better determined than the skewness coefficients, which were also computed, but not
reported since they convey a very similar picture to the mean-median gaps.
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Model 0, Jr dr
§ B Distn | Mean  Median MeanLog £2 hy R; £2
0801 St(3) [ 0772  0.204 —1.630 | 0.571 0.634 0.468 —0.004

(0.119) (0.004) (0.021) (0.005) (0.005) (0.005) (0.070)

N | 0777 0411 —1.015 | 0.613 0.662 0.460 —0.002
(0.011) (0.007) (0.018) (0.005) (0.005) (0.004) (0.076)

U 0778  0.605 —0.746 | 0.639 0.677 0.469 0.006
(0.007) (0.011) (0.014) (0.006) (0.006) (0.005) (0.071)

0.4 | St(3) | 0.663  0.265 —1.286 | 0.553 0.748 0.634 —0.009
(0.065) (0.005) (0.023) (0.005) (0.004) (0.004) (0.078)

N | 0.667  0.480 —0.788 | 0.576 0.751 0.615 0.014
(0.009) (0.009) (0.015) (0.006) (0.006) (0.004) (0.062)

U |0666 0594 —0.618 | 0.585 0.739 0.574 0.013
(0.006) (0.007) (0.011) (0.006) (0.006) (0.005) (0.061)

0.7 | St(3) | 0.329  0.182 —1.638 | 0.517 0.835 0.767 0.004
(0.038) (0.004) (0.021) (0.005) (0.004) (0.004) (0.072)

N | 0.333 0289 -1.262 | 0.519 0.809 0.729 —0.002
(0.004) (0.004) (0.015) (0.005) (0.005) (0.005) (0.058)

U 10333 0.323 —1.176 | 0.521 0.774 0.675 0.014
(0.003) (0.003) (0.009) (0.006) (0.005) (0.005) (0.065)

1 [01] St(3) [ 1.020 0.262 —1.379 | 0.588 0.650 0.474 0.002
(0.262) (0.006) (0.020) (0.005) (0.005) (0.005) (0.059)

N | 1.001  0.530 —0.761 | 0.647 0.699 0.477 0.017
(0.015) (0.011) (0.014) (0.007) (0.006) (0.004) (0.056)

U |1.001 0778 —0.495 | 0.693 0.740 0.495 0.049
(0.010) (0.015) (0.014) (0.008) (0.008) (0.005) (0.056)

0.5 | St(3) | 1.068  0.442 —0.769 | 0.575 0.809 0.693 0.008
(0.857) (0.010) (0.019) (0.006) (0.004) (0.005) (0.060)

N | 0.997  0.768 —0.208 | 0.627 0.841 0.680 0.061
(0.012) (0.012) (0.016) (0.008) (0.006) (0.005) (0.073)

U 10999 0927 —0.158 | 0.671 0.866 0.642 0.189
(0.008) (0.009) (0.009) (0.010) (0.007) (0.005) (0.060)

0.9 | St(3) | 0.975  0.693 —0.290 | 0.553 0.953 0.900 0.279
(0.098) (0.018) (0.031) (0.010) (0.005) (0.004) (0.073)

N | 0998 0954 —0.049 | 0.594 0.965 0.873 0.615
(0.015) (0.016) (0.013) (0.022) (0.005) (0.005) (0.074)

U 10999  0.992 —0.022 | 0.629 0.971 0.844 0.729
(0.008) (0.008) (0.010) (0.032) (0.006) (0.005) (0.072)

1201 St(3) | 1.209  0.319 —1.176 | 0.607 0.669 0.480 0.004
(0.180) (0.007) (0.019) (0.005) (0.005) (0.004) (0.069)

N | 1.224 0648 —0.565 | 0.685 0.739 0.495 0.005
(0.016) (0.011) (0.015) (0.007) (0.007) (0.005) (0.068)

U |1223 0951 —0.294 | 0.760 0.807 0.517 0.050
(0.012) (0.018) (0.013) (0.009) (0.008) (0.006) (0.067)

0.5 | St(3) | 1.396  0.619 —0.428 | 0.617 0.843 0.708 0.054
(0.188) (0.013) (0.024) (0.007) (0.006) (0.005) (0.068)

N | 1400  1.080 0.037 0.840 0.952 0.714 0.574
(0.020) (0.018) (0.015) (0.028) (0.010) (0.006) (0.094)

U [1.399  1.299 0.178 0.994 0.998 0.779 0.999
(0.010) (0.013) (0.009) (0.003) (0.001) (0.025) (0.025)

0.9 | St(3) | 3.025  2.090 0.810 0.999 1.000 1.000 0.959
(0.381) (0.055) (0.034) (0.001) (0.001) (0.001) (0.099)

N 2999 2867 1.045 1.000 1.000 1.000 0.991
(0.044) (0.048) (0.016) (0) (0) (0) (0.047)

U |2998 20976 1.078 1.000 1.000 1.000 1.019
(0.026) (0.028) (0.009) (0) (0) (0) (0.010)

Table 2: Series properties and persistence measures for the GARCH(1,1) model
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Model L\ Jr d?
« d Dist'n | Mean Median MeanLog f? hy Ry f%
0.8 10.9 | St(3) | 0.805 0.218 —1.418 0.571 0.634 0.656 0.018

(0.140)  (0.005) (0.027) (0.005) (0.007) (0.016) (0.073)

N 0.800 0.412 —0.898 0.614 0.655 0.608 0.030
(0.011)  (0.008) (0.016) (0.005) (0.006) (0.007) (0.073)

U 0.801 0.622 —0.678 0.642 0.669 0.570 0.018
(0.008)  (0.012) (0.012) (0.006) (0.007) (0.006) (0.068)

0.5 | St(3) | 0.797  0.422 —0.738 0.556 0.785 0.738 0.172
(0.091)  (0.012) (0.030) (0.006) (0.012) (0.020) (0.093)

N 0.800 0.614 —0.432 0.577 0.754 0.656 0.157
(0.011)  (0.010) (0.016) (0.006) (0.008) (0.007) (0.078)

U 0.798 0.710 —0.345 0.585 0.722 0.599 0.134
(0.007)  (0.009) (0.010) (0.006) (0.007) (0.005) (0.070)

0.1 | St(3) | 0.765 0.611 —0.400 0.523 0.873 0.809 0.224
(0.079)  (0.030) (0.056) (0.007) (0.017) (0.012) (0.101)

N 0.778 0.730 —0.279 0.524 0.797 0.732 0.143
(0.010)  (0.010) (0.014) (0.005) (0.010) (0.006) (0.066)

U 0.779 0.763 —0.266 0.525 0.753 0.666 0.149
(0.006)  (0.007) (0.008) (0.005) (0.013) (0.005) (0.062)

1 109 St3) | 0.980 0.271 —1.199 0.588 0.656 0.673 0.043
(0.120)  (0.005) (0.020) (0.005) (0.007) (0.016) (0.073)

N 1.002 0.516 —0.674 0.648 0.702 0.648 0.105
(0.013)  (0.011) (0.016) (0.007) (0.010) (0.014) (0.083)

U 1.001 0.777 —0.453 0.695 0.741 0.619 0.166
(0.008)  (0.013) (0.014) (0.009) (0.011) (0.011) (0.062)

0.5 | St(3) | 0.993 0.528 —0.507 0.575 0.818 0.760 0.291
(0.117)  (0.016) (0.035) (0.009) (0.017) (0.023) (0.086)

N 0.999 0.767 —0.207 0.622 0.832 0.696 0.410
(0.014)  (0.011) (0.014) (0.019) (0.024) (0.015) (0.087)

U 0.999 0.887 —0.122 0.651 0.838 0.635 0.468
(0.009)  (0.012) (0.009) (0.022) (0.026) (0.010) (0.085)

0.1 | St(3) | 0.995 0.769 —0.172 0.536 0.893 0.820 0.352
(0.306)  (0.047) (0.067) (0.013) (0.022) (0.016) (0.107)

N 0.976 0.914 —0.057 0.537 0.855 0.744 0.304
(0.013)  (0.012) (0.013) (0.006) (0.021) (0.006) (0.058)

U 0.973 0.953 —0.042 0.538 0.839 0.682 0.344
(0.007)  (0.007) (0.009) (0.006) (0.024) (0.006) (0.060)

1.2 109 | St(3) | 1.183 0.326 —1.013 0.606 0.682 0.693 0.083
(0.129)  (0.007) (0.023) (0.005) (0.009) (0.020) (0.089)

N 1.198 0.617 —0.496 0.702 0.780 0.716 0.305
(0.015)  (0.012) (0.015) (0.027) (0.033) (0.034) (0.116)

U 1.201 0.932 —0.271 0.830 0.895 0.751 0.562
(0.010)  (0.015) (0.014) (0.041) (0.033) (0.022) (0.101)

0.5 | St(3) | 1.211 0.631 —0.322 0.620 0.871 0.792 0.431
(0.242)  (0.021) (0.033) (0.032) (0.030) (0.024) (0.121)

N 1.193 0.916 —0.023 0.929 0.979 0.721 0.966
(0.018)  (0.015) (0.014) (0.034) (0.013) (0.010) (0.047)

U 1.193 1.062 0.063 0.977 0.992 0.683 1.004
(0.010)  (0.013) (0.008) (0.010) (0.005) (0.009) (0.013)

0.1 | St(3) | 1.148 0.917 0.010 0.574 0.925 0.827 0.454
(0.104)  (0.041) (0.057) (0.047) (0.026) (0.011) (0.130)

N 1.167 1.094 0.125 0.643 0.956 0.788 0.643
(0.015)  (0.014) (0.013) (0.029) (0.013) (0.014) (0.058)

U 1.168 1.144 0.141 0.686 0.964 0.792 0.695
(0.009)  (0.010) (0.009) (0.024) (0.010) (0.019) (0.056)

Table 3: Series properties and persistence measures for the HY /FIGARCH model
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be attributed to structural breaks in the unconditional variance, rather than to GARCH-type
dynamics. However, it is clear that apparent long range dependence can be observed in the
stationary cases simulated here. We would agree with these authors that the evidence of long-
range dependence is spurious, in the sense that it is not generated by a fractionally integrated
structure, as it is in Table 1 for example. However, our diagnosis of the cause does not invoke
structural breaks. Rather, we see it as a phenomenon analogous to having an autoregressive root
local to unity in a levels process, leading to Ornstein-Uhlenbeck-type dynamics which are easily
confused with long memory in finite samples. However, the analogy is necessarily a loose one in
view of the special features of the volatility process which we have detailed in Section 2.

5 Implications for volatility forecasting

When using models of the ARCH/GARCH class for volatility forecasting two or more steps
ahead, the usual methodology is to apply the standard recursion for a minimum mean squared
error (MSE) forecast, with ¢% +; for j > 0 replaced by its (assumed) conditional expectation.
Among many references describing this technique see for example Poon (2005) page 39 and also
the Eviews 8 User Guide (2013), page 218, for a practical implementation.

In other words, if h; is defined by (1.1) (and implicitly assuming the parameters are replaced
by appropriate estimates) we would replace 5? by Et,1§t2 = hy, and so set?

The volatility forecast error accordingly has the form

Jir1i-1 = hp1 — i"t-&-llt—l
= 01(& — )
= O1h(22 - 1). (5.2)
In the general k-step ahead case,
~ k—1 ~ 00
higppt—1 =w + ijl O5h—j+ke—1 + Okhe + ijk+1 05€ ik (5.3)
and so 1 N
Jtrkpt—1 = ijl 0 fr—jthit—1 + ijl Oihi—jin (2 jin — 1) (5.4)

For example, consider the GARCH(1,1) model in (4.1) which rearranges as
hev1 = w(1 = B) +[(6 — B)2] + Blhe.

If 22 is replaced by E;_122 = 1 to construct the forecast, (5.2) reduces to

ft+1|t—1 = (6 - 5)ht(zt2 —1).

The problem with this formulation, as the preceding analysis demonstrates, is that due to the
skewness of the distribution of z?, the mean may not be the best measure of central tendency.
The persistence of the process, and hence its forecastability, will be exaggerated by this choice. In
effect, the problem is closely allied to that of forecasting in model (2.8) by using S as the forward
projection for unobserved ;. S is not the value that ¥, is close to with highest probability, and

4We call this expression the two-step volatility forecast since h; itself is of course the one-step forecast.
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hence the one that will deliver an accurate projection with high probability. The majority of
volatility forecasts will be “overshoots”, balanced by a smaller number of more extreme “under-
shoots”. The forecast is unbiased in the sense E( ft+k‘t_1) = 0 when this expectation is defined,
but this condition excludes the IGARCH and FIGARCH and other nonstationary cases. Even
if the mean squared forecast error is defined, in this context, it is not clear that the MSE is an
appropriate loss function.

We investigated this issue experimentally with the results reported in Tables 4 and 5 for the
GARCH(1,1) and pure HY /FIGARCH models respectively. We studied the distribution of errors
in the two-step forecasts constructed under different assumptions about the appropriate measure
of central tendency of the shocks, denoted by M in the definition

fertpp—1 = O1he(2f — M). (5.5)

The median absolute values (MAVs) of the variables defined in (5.5) were computed for six
choices of M. In the tables, the minimum value of the MAV in each row is indicated in boldface.
Note that in only two of these cases does M exceed 0.5 and in both, the difference from the
adjacent lower value is minimal. The rule that M = 0.1 gives the best result for the Student(3)
case, M = 0.3 for the Gaussian case and M = 0.5 for the uniform case appears to hold quite
generally. The implication may be that future volatility is significantly overstated by conventional
procedures.

We can reasonably assume that the optimal M values are those closest to the modes of
the respective distributions. While estimating the mode of an empirical distribution is not a
straightforward procedure, constructing medians is easy and the medians of our squared normal-
ized distributions, estimated from samples of size 10,000, are 0.763 for the uniform, 0.423 for the
Gaussian and 0.176 for the Student(3). In default of a more precise analysis, a rough and ready
rule of thumb would be to estimate the MAV-minimizing M by 2/3 times the sample median of
the normalized residuals. This corresponds to computing the k-step volatility forecasts by the
recursion

~ . k ~ 00
heikji—1 = w + 3Median(z7) ijl Oihe—j k-1 + Zj:kJrl 05E7 ;i1 (5.6)
where }Azt|t,1 = hy.

A more extensive simulation study than the present one would be needed to confirm this
recommendation. We do note, however, that the rule would apply successfully in both the
covariance stationary and the covariance nonstationary cases that have been simulated here.
Although h; has the interpretation of a conditional variance only in the stationary case, note
that the problem we highlight is not connected with the non-existence of moments. It is entirely
a matter of adopting a minimum MSE estimator of a highly skewed distribution, such that the
outcome is overestimated in a substantially higher proportion of cases than it is underestimated.

6 Concluding Remarks

In this paper we have investigated the dynamics of certain conditional volatility models with a
view to understanding their propensity to predict persistent patterns of high or low volatility.
Understanding how persistence depends on the various model characteristics, while intriguing and
often counterintuitive, is perhaps a matter of mainly theoretical interest. However, there is also
an important message here for practitioners. Conventional forecasting methodologies that are
optimal under the assumption of symmetrically distributed shocks may be viewed as overstating
the degree of future volatility. This is, of course, an issue essentially of the preferred choice of
loss function. Practitioners may validly elect to favour the unbiasedness and minimum MSE
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Model M
1) B | Dist'n 1 0.9 0.7 0.5 0.3 0.1
0.8 | 0.1 | St(3) | 0.070 0.063 0.049 0.035 0.020 0.010
N 0.078 0.070 0.054  0.041 0.032 0.047
U 0.091 0.083 0.071 0.066 0.085 0.121
0.4 | St(3) | 0.171 0.153 0.118 0.084 0.052 0.028
N 0.204 0.185 0.148 0.115 0.090 0.111
U 0.232 0.216 0.184 0.162 0.176 0.246
0.7 | St(3) | 0.073 0.065 0.050 0.036 0.022 0.010
N 0.076 0.069 0.055 0.041 0.028 0.034
U 0.076  0.070 0.058 0.046 0.045 0.065
1.0 | 0.1 | St(3) | 0.094 0.084 0.064  0.045 0.028 0.015
N 0.122 0.110 0.088 0.069 0.061 0.085
U 0.184 0.174 0.160 0.161 0.193 0.257
0.5 | St(3) | 0.338 0.303 0.234 0.168 0.108 0.069
N 0.693 0.637 0.536 0.446 0.386 0.410
U 1.198 1.150 1.076 1.034 1.067 1.248
0.9 | St(3) | 0.246 0.221 0.173 0.127  0.085 0.054
N 1.118 1.033 0.876 0.734 0.621 0.592
U 2.352  2.267 2.109 1.984 1.932 2.103

Table 4: MAV 2-step forecast error in GARCH(1,1), against M (see(5.5))

Model M
Q d | Dist'n 1 0.9 0.7 0.5 0.3 0.1
0.8 1 0.9| St(3) | 0.038 0.034 0.026 0.018 0.011 0.005
N 0.043 0.039 0.030 0.023 0.017 0.026
U 0.050 0.046 0.039 0.036 0.048 0.068
0.5 | St(3) | 0.156 0.140 0.108 0.078 0.049 0.027
N 0.216 0.196 0.157 0.122 0.094 0.114
U 0.244 0.226 0.192 0.166 0.182 0.257
0.1 | St(3) | 0.053 0.047 0.036 0.026 0.016 0.007
N 0.055 0.049 0.039 0.029 0.019 0.024
U 0.053 0.049 0.041 0.032 0.031 0.045
1.0 | 0.9 | St(3) | 0.050 0.045 0.034 0.024 0.014 0.008
N 0.073 0.066 0.053 0.041 0.036 0.050
U 0.116 0.110 0.101 0.101 0.120 0.161
0.5 | St(3) | 0.300 0.269 0.208 0.150 0.097 0.060
N 1.382 1.271 1.060 0.874 0.734 0.751
U 3.862 3.688 3.372 3.164 3.198 3.838
0.1 | St(3) | 0.429 0.384 0.298 0.216 0.138 0.076
N 0.663 0.603 0.488 0.379 0.279 0.314
U 0.658 0.614 0.526 0.440 0.419 0.599

Table 5: MAV 2-step forecast error in HY /FIGARCH, against M (see(5.5))
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properties over minimizing the MAV. They should nonetheless not overlook the fact that the
usual rationale for the former criterion implicitly assumes a Gaussian framework, and is arguably
inappropriate in the context of predicting volatility.

A Appendix: Proofs

A.1 Proof of Proposition 2.1

First, consider the case of where {1}, } is replaced by {1}, a nonstochastic sequence of coefficients.
Then

o0
hi=w+ Y Vh (A-1)
j=1
with w > 0 and ; > 0 for all j > 1 has a stable, positive solution if and only if this is true of
the equation

hi=w+ [ ;| hiy (A-2)
j=1
Stable solutions of (A-1) and (A-2), if they exist, are both of the form
w

——x— >0
=255

implying in both cases the necessary and sufficient condition
o0
> <1 (A-3)
j=1

Next, consider the stochastic sequence {1;;}. Let this be randomly drawn at date o, as the
functional of the random sequence {z;,—;,j > 0}, and then let a step be taken according to either
equation (2.1) or equation (2.8). Call this in either case a convergent step if 372 1, = Wy, < 1.
That is, if the process is allowed to continue with this same fixed drawing, the sequence of steps
so generated must approach the particular solution

- w

ho = .
0T 1o,

(A-4)

This is a drawing from the common distribution of stable solutions, which are almost surely finite.

Suppose that every step taken is convergent, in this sense. Then, the sequence is always
moving so as to reduce its distance from some point in the distribution of stable solutions. It
therefore cannot diverge. More generally, let each step have a certain fixed probability of being
convergent. The probability that the sequence diverges can be reduced to zero by setting this
probability high enough. This is, from elementary considerations, a sufficient condition for {h;}
to be finite almost surely.

To show that the same condition is sufficient for {h;} generated by (2.1) to be finite almost
surely, first note that the step defined by (2.8) can be written for given Wy, in the form

Ahf = (‘I’to - 1)(}1211 - EO)- (A‘5)

In this representation, the condition for a convergent step is that Ahy and hj_; — ho have different
signs. Now write the BN form (2.6) in the equivalent representation, as

Ahy = (W, — 1) (hi—1 — ho) + R} (A-6)
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where the remainder, like Wy, is specified for the particular shock sequence {zy,—;,j > 0} as

R} = h Ahy . (A-T7)
k=1

In this case, Uy, < 1 does not imply Ahi(hi—1 — ho) < 0 since the sign of Ah; also depends on
RY.

For the case hy_1 > hg, consider the circumstances in which R? > 0. Rearrangement of the
sum (A-7) leads to

Rg = — Zeszo,k(ht_l — htfk)
k=2

so that a necessary condition for R > 0 is that h;_1 < h;_j for at least one value of k > 1. This
shows that with ¥;, < 1 a sequence {h;} generated by (A-6) can never diverge, and is almost
surely finite. Conversely, if hy_1 < hg the necessary condition for RY < 0 is hy_1 > h;_j for at
least one k > 1, although this case is not critical to the property P(h; < oo) = 1. 11

A.2 Proof of Proposition 2.2
The solution of (2.8) is
oo m—1
B =w (1 +> 11 \Iftk> . (A-8)
m=1 k=0

Since E;io #; < oo and the sequence {27]11 0jztzfj,m > 1} is monotone, ¥, is a measurable
function of {zs, —00 < s < t} by (e.g.) Davidson (1994), Theorems 3.25 and 3.26. The sequence

{W,;, —00 < t < oo} is therefore strictly stationary and ergodic.® It follows by the ergodic theorem
that

[asry

m—

Z log ¥;_;, 23 ¢. (A-9)
k=0

1
m

Hence, with probability one,

m—1

lim sup e™™¢ H W, <00

for —oo < t < co. There therefore exists N < oo such that hj = h}, + O(e’V¢) with probability

1, where
N m—1
R = w (1 +> 11 \Ift_k> : (A-10)

m=1 k=0

The remainder term can be made as small as desired by taking N large enough, and (A-10) is
a measurable function of {zs5,—00 < s < t} by (e.g.) Davidson (1994) Theorem 3.25. Strict
stationarity and ergodicity of {h}, —0co < t < oo} follows, completing the proof.

’Nelson (1990) cites Theorem 3.5.8 of Stout (1974) in support of a comparable assertion to this one. While the
conditions do not precisely correspond, Phillips (1988) Section 1.15 provides a concise proof for the general case of
doubly-infinite sequences.
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