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Abstract

This paper derives a simple su¢ cient condition for strict stationarity in the ARCH(1)
class of processes with conditional heteroscedasticity. The concept of persistence in these
processes is explored, and is the subject of a set of simulations showing how persistence
depends on both the pattern of lag coe¢ cients of the ARCH model and the distribution of
the driving shocks. The results are used to argue that an alternative to the usual method of
ARCH/GARCH volatility forecasting should be considered.

1 Introduction

The ARCH and GARCH and related classes of volatility models are employed to exploit the fact
of local persistence in the volatility of returns processes, so as to predict volatility a number of
steps into the future. Notwithstanding the large volume of research that has been devoted to
understanding these models since their inception, there remains a degree of mystery surrounding
their dynamic properties, and hence the degree to which they assist the e¤ective forecasting of
future volatility. Analogies drawn from the theory of linear processes in levels have sometimes
been invoked inappropriately in attempts to explain their behaviour, as has been detailed in
Davidson (2004) among other commentaries.

This paper considers the ARCH(1) model of an uncorrelated returns sequence f�tg in which,
for �1 < t <1,

�t =
p
htzt

where zt � i:i:d:(0; 1) and

ht = ! +
1X
j=1

�j�
2
t�j (1.1)

with ! > 0, �j � 0 for all j and S =
P1
j=1 �j <1. Interest focuses on the three salient features

of models of this type: the value of S; the decay rate of the lag coe¢ cients; and the distribution of
zt: Having regard to the �rst of these features, it is well known that S < 1 is a necessary condition
for covariance stationarity. Unless this condition applies it is inappropriate to speak of ht as the
�conditional variance�although it is always well-de�ned as a volatility indicator. In respect of the
second feature, it is also well known that the Bollerslev (1986) GARCH class of models imposes
exponential decay rates on the coe¢ cients, and the HYGARCH class due to Davidson (2004)
which includes the FIGARCH model of Baillie et al. (1996), embodies hyperbolic decay rates.
In respect of the third, the disturbances are often speci�ed to be Gaussian, even though it is a
well-known stylized fact that the residuals from estimated GARCH models in �nancial data can
exhibit excess kurtosis.
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The question of strict stationarity in covariance nonstationary processes was �rst examined
by Nelson (1990). In the GARCH(1,1) model

ht = 
 + ��2t�1 + �ht�1 (1.2)

which has the form of (1.1) with ! = 
=(1��), and �j = ��j�1so that S = �=(1��), he showed
the necessary and su¢ cient condition for strict stationarity to be

E log(�z21 + �) < 0: (1.3)

Subsequent work on this problem notably includes Bougerol and Picard (1992) who consider the
GARCH(p; q) extension of Nelson�s result, and emphasize the role of the negativity of the top
Lyapunov exponent of a certain sequence of random matrices. Kazakeviµcius and Leipus (2002)
show that a necessary condition for a stationary solution in the ARCH(1) class is

logS < �E log(z21) (1.4)

while Douc et al. (2008) prove a su¢ cient condition of the form

Ejz1j2p
1X
j=1

�pj < 1; some p 2 (0; 1]: (1.5)

In this paper we consider conditions for strict stationarity, but also the wider question of the
persistence of stationary volatility processes; speci�cally, how long episodes of high volatility tend
to persist, once initiated, and hence how far into the future variations in volatility may feasibly
be forecast. This notion of persistence, which is independent of the existence of moments, is
made precise in Section 3, where we de�ne it in terms of the (in)frequency of crossings of the
median in successive steps. Thus, a process which crosses the median at most a �nite number
of times in a realization of length T , as T ! 1, is necessarily nonstationary, either converging
or diverging. At the other extreme, a serially independent process crosses the median with
probability 1=2 at each step, by construction. Conditions for strict stationarity of a process in
e¤ect de�ne the boundary beyond which persistence becomes divergence, and there is no reversion
tendency de�ning a stationary distribution. In Section 2, a decomposition of the ARCH(1)
equation is introduced which simpli�es the problem of seeing how persistence and stationarity
depends on the various model features. We use this representation to derive a new su¢ cient
condition for strict stationarity. In the GARCH(1,1) case where the stationarity boundary in the
parameter space is known, we show numerically that our condition is not too far from necessity,
in contrast to a strong condition such as (1.5). The properties of these models are shown to be
the result of rather complex interactions between the shock distribution and the linear structure.
Section 4 reports a comprehensive set of simulations, covering covariance stationary, strictly
stationary and nonstationary cases. Section 5 considers the implications of our analysis for the
optimal forecasting of volatility, and investigates alternatives to the minimum mean squared
error criterion, which is conventional but not necessarily optimal in the context of highly skewed
volatility processes. Section 6 contains concluding remarks, and proofs of the propositions stated
in Section 2 are gathered in an appendix.

2 Stationarity and Persistence in the ARCH(1) Class
Write (1.1) in the alternative form

ht = ! +
1X
j=1

 jtht�j (2.1)
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where
 jt = �jz

2
t�j : (2.2)

In words, we can describe this as an in�nite-order linear di¤erence equation with independently
distributed random coe¢ cients.

To focus attention on the persistence properties of (2.1), it is helpful to apply a variant of
the so-called Beveridge-Nelson (1981) decomposition (henceforth, BN), which was introduced as
a tool of econometric analysis by Phillips and Solo (1992). The BN decomposition is the easily
veri�ed identity for polynomials �(x) =

P1
j=0 �jx

j having the form

�(x) = �(1) + ��(x)(1� x)

where ��j = �
P1
k=j+1 �k. In the present application we consider, for each t, the stochastic

polynomial in the lag operator

 t(L) =

1X
j=0

 jtL
j

where the coe¢ cients are given by (2.2) with  0t = �0 = 0. The BN form of this expression is

 t(L) = 	t +  
�
t (L)(1� L)

where

	t =  t(1) =
1X
j=1

 jt (2.3)

and note that
E(	t) = S: (2.4)

The coe¢ cients of  �t (L) are  
�
0t = 0 and, for k � 1,

 �kt = �
1X

l=k+1

�lz
2
t�l � 0: (2.5)

Accordingly write (2.1) as
ht = ! +	tht�1 +Rt (2.6)

where

Rt =

1X
k=1

 �kt�ht�k: (2.7)

Note that if fhtg is a stationary process, the terms �ht are negatively autocorrelated and their
contribution to the dynamics is therefore high-frequency, in general. That the longer-run per-
sistence and stationarity properties of the process depend critically on the distribution of the
sequence f	tg is shown by the following proposition. (Proofs are gathered in the appendix.)

Proposition 2.1 If the stochastic process fh�t g1t=�1 where

h�t = ! +	th
�
t�1 (2.8)

satis�es a su¢ cient condition for P (h�t <1) = 1, then P (ht <1) = 1 also holds for (2.1).

With this consideration in mind we give the following result, establishing a su¢ cient condition
for stationarity of fhtg. For convenience of notation, let the symbol � denote the constant
E(log	t), not depending on t since fztg is i.i.d.
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Figure 1: Gaussian GARCH(1,1) model: (�; �) pairs where � = 0 and stationarity boundary
points (Nelson 1990).

Proposition 2.2 If
� < 0 (2.9)

then fh�t g1t=�1 de�ned by (2.8) is strictly stationary and ergodic:

Su¢ ciency of the covariance stationarity condition S = E(	t) < 1 follows from Proposition 2.2
by the Jensen inequality.

Consider this result in the case of the GARCH(1,1) process (1.2). This is a special case
because, uniquely among ARCH(1) processes, it can be expressed exactly in the form (2.8). In
other words, we may write the model as

ht = 
 +	ytht�1 (2.10)

where 	yt = �z2t�1 + � and 
 = !(1 � �). Proposition 2.2 can be applied directly to (2.10) to
obtain condition (1.3), which Nelson (1990) shows to be necessary as well as su¢ cient. However,
writing the model in its ARCH(1) representation with

	t = �z2t�1 + ��z
2
t�2 + ��

2z2t�3 + � � �

as in (2.3), we obtain
� = E(log	t) = E[log(�z2t�1 + �	t�1)]: (2.11)

In the case � = 0, so that S = �, the conditions (1.3) and (2.9) match. They also match the
necessary condition (1.4) which for the GARCH(1,1) case becomes

E log(�z21) < log(1� �):

Also, letting � ! 1 while letting � tend to zero at such a rate as to �x the sum of the coe¢ cients
at S = �=(1 � �), note that condition (2.9) in case (2.11) implies the covariance stationarity
condition S < 1. This follows because 	t ! S almost surely as �! 0 by the strong law of large
numbers, noting that it is a weighted average of i.i.d.random variables with means of unity and
weights with �nite sum S.
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For the intermediate cases with 0 < � < 1, conditions (1.3) and (2.9) do not match but
can be compared, giving an opportunity to verify the sharpness of the latter condition. Some
numerical experiments with Gaussian shocks are illustrated in Figure 1, showing �-values at
which � � 0 for � = 0; 0:1; 0:2; : : : ; 0:9. The mean is estimated in each case as the average of
20,000 values of log(	t) where 	t is calculated from a generated i.i.d. Gaussian sequence fztg and
the recursion 	t = �z2t�1+�	t�1. The actual stationarity boundary points from (1.3) are shown
for comparison, as plotted in Figure 1 of Nelson (1990).1 By comparison, note that the su¢ cient
condition (1.5) of Douc et al. (2008) is substantially stronger than the bound of Proposition
2.2. For the cases illustrated in Figure 1, the boundary value of S = �=(1� �) ranges from 1 at
� = 0:9 up to 2.1 at � = 0:1. In the Gaussian case, a lower bound on Ejz1j2p is

p
2=� = 0:798

at p = 0:5, whereas S is a lower bound on the second factor of condition (1.5). For most of these
cases, there is no value p 2 (0; 1] close to meeting the stated condition.

The way in which these conditions depend on the distribution of z21 can be appreciated by
considering Figures 2-4, which show simulated paths (T = 5000, with 10,000 presample steps) for
three cases of the IGARCH(1,1) model, with ! = 1 and � = 0:9 in each case. These are among
the models studied in Section 4 of the paper. The sole di¤erence between the three cases comes
from the shock distributions, which are, respectively, the Student t with 3 degrees of freedom, the
Gaussian, and the uniform, in each case normalized to zero mean and unit variance. Estimates
of �E(log z21) (computed as averages of samples of size 20,000) are, respectively, 2:02 for the
Student(3), 1:25 for the Gaussian, and 0:87 for the uniform case. These may be compared with
log(S) = 0 in the light of the necessary stationarity condition (1.4). The plots show how these
characteristics map into di¤erences in persistence, pointing up the somewhat counter-intuitive
e¤ect of fat tails on persistence

Turning now to the general ARCH(1) case, note �rst that from (2.4) and ! > 0 it follows that
the existence of E(h�t ) requires S < 1, mirroring the full model (2.6); in the same case, observe
that E(Rt) = 0. Except in the case where S < 1, stationarity depends on the distribution of 	t
and particularly on the degree of positive skewness which, as a moving average of squared shocks,
	t must exhibit in some degree. If the mass of the distribution of 	t falls below one, the mass of
the distribution of log	t is in the negative part of the line. While E(log	t) < logS by the Jensen
inequality, the logarithm of a positive and positively skewed random variable has a more nearly
symmetric distribution than the variable itself. Hence, E(log	t) lies correspondingly closer
to Median(log	t) = log(Median(	t)), which in turn lies further below logS, as the skewness
is greater. In terms of the dynamics of the process, to the extent that 	t is symmetrically
distributed about its mean S, and S � 1, the probability that a step is convergent, in the sense
of Proposition 2.1, is relatively small. The stochastic di¤erence equation de�ned by (2.8) must,
with the complementary probability, behave like either a unit root process with positive drift or
an explosive process. However, skewness will increase the proportion of the realizations falling
below the mean, yielding stationary behaviour on more frequent occasions, compensated by less
frequent but larger excursions above the mean.

In this context, we can appreciate the rather complex role played by the rate of decay of the
nonnegative sequence f�jg1j=1, given its �xed sum S = E(	1). First, note that the skewness of
	1 derives from and is bounded by the skewness in the distribution of the increments fz2s ; s �
0g. Hence, the necessary condition (1.4) can be understood as the minimal condition for non-
divergence when S � 1. This condition would also be su¢ cient in the case �j = 0 for j > 1 and
S = �1 = 1 (the IARCH(1) model), in which case the distributions of 	1 and z21 match. However,
when 	1 is a moving average of the fz2sg process, the distribution of 	1 depends critically on
the distribution of the lag coe¢ cients. Since the lag weights have a �nite sum S, the e¤ects

1Note that the axes in our �gure are interchanged relative to Nelson�s �gure.
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Figure 2: Simulation of IGARCH(1,1) with � = 0:9 and Student(3) shocks.

Figure 3: Simulation of IGARCH(1,1) with � = 0:9 and Gaussian shocks.

Figure 4: Simulation of IGARCH(1,1) with � = 0:9 and uniform shocks
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of a longer or shorter average lag are to introduce di¤erent degrees of averaging of the squared
shocks. The somewhat complex nature of this relation depends on the existence of a trade-o¤
between two countervailing e¤ects. Assuming that z1 possesses a fourth moment, the central
limit theorem implies that 	1 is attracted to the normal distribution, with skewness increasingly
attenuated, as lag decay gets slower. At the same time, the law of large numbers implies that
the variance of 	1 is smaller. The �rst of these e¤ects is tending to increase the persistence
of the fh�t g process, while the second is tending to lower the in�uence of h�t on the volatility
of ��t =

p
h�t zt, simply because the noise contribution from zt becomes more dominant as the

variations in h�t are attenuated. It is therefore di¢ cult to predict the e¤ect of changing the lag
decay in any given case.

To summarize: if the contribution of the term Rt in (2.6) to the persistence properties can
be largely discounted, as we argue, the persistence and stationarity of the ARCH(1) process
can be related, through the distribution of 	1, to the three key factors: S, the rate of decay of
the lag coe¢ cients, and the marginal distribution of z1. Greater/smaller kurtosis of z1 implies
greater/smaller positive skewness in the distribution of z21 , and hence gives rise to less/more
persistence in fhtg, other things equal. A longer average lag can, counterintuitively, imply a
lesser degree of persistence in the observed process, virtually the opposite of the role of lag decay
in models of levels, where the sum of the lag coe¢ cients is not constrained in the same way, and
shocks are viewed implicitly as having a symmetric distribution. Finally, it is most important
to note that the distinction between exponential and hyperbolic decay rates has quite di¤erent
implications here than in models of levels. There is no counterpart to so-called long memory in
levels, otherwise called fractional integration. The dynamics are nonlinear and there is no simple
parallel with linear time series models. The closest analogy is with a single autoregressive root
which in the covariance nonstationary cases is local to unity.

In the remainder of the paper, we report some simulations to throw light on the volatility
persistence properties of alternative simple cases of the ARCH(1) class. However before that
is possible we need a framework for comparing persistence in general time series processes. The
next section considers some alternative approaches.

3 Measuring the Persistence of Stationary Time Series

The persistence, or equivalently memory, of a strictly stationary process can be thought of heuris-
tically in terms of the degree to which the history of the process contains information to predict its
future path, more accurately than by simple knowledge of the marginal distribution. In the con-
text of univariate forecasting, forecastability must entail that changes in the level of the process
are relatively sluggish. It is customary to measure this type of property with reference to the
autocovariance sequence, but this is not a valid approach in the absence of second moments.

We resort instead to the idea that the key indicator of persistence is the (in)frequency of
reversion towards a point of central tendency. We may formalize this notion by de�ning the
persistence of an arbitrary sequence fXtgTt=1 speci�cally in terms of the number of occasions
on which the series crosses its median point. The direct measure of this property, which is
well de�ned and comparable in any sample sequence whatever, is the relative median-crossing
frequency, although it�s more convenient to consider the complementary relative frequency of
non-crossings. We therefore de�ne

JT =
1

T

XT

t=2
I((Xt �MT )(Xt�1 �MT ) > 0) (3.1)

where T is sample length, I(:) denotes the indicator of its argument andMT is the sample median.
JT measures the persistence of a sample as a point in the unit interval. When the sequence is
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serially independent, JT ! 1=2 as T !1, almost surely, by construction. In other words, under
independence half of the pairs of successive drawings must fall on di¤erent sides of the median on
average. The extreme cases are JT ! 0 (anti-persistence) and JT ! 1 (persistence). In the latter
case, at most a �nite number of median crossings as T ! 1 implies that the sequence either
converges, or diverges to in�nity. In neither case can it be strictly stationary. The condition
limsup JT < 1 is evidently necessary for strict stationarity.

JT in (3.1) applied to a given sequence measures what we may designate persistence in lev-
els. Persistence in volatility is measured by the statistic analogous to JT for the squared or
(equivalently) absolute values of the series. From the standpoint of returns it is second order
persistence, so de�ned, that is our interest in the present analysis. The JT statistic can be com-
puted for arbitrary transformations of the variables, and a necessary and su¢ cient condition for
strict stationarity would appear to be that the sequences fJT ; T � 2g are bounded below 1 for
all such variants. However, the two leading cases mentioned appear the important ones in the
usual time series context.

JT is an ordinal measure that is well de�ned regardless of the existence of moments and is
also invariant under monotone transformations. Thus, the cases Xt = �2t and Xt = j�tj must
yield the same value of JT . More interestingly, it is invariant under the operation of forming the
normalized ranks of the series, fxtgTt=1. Letting F̂T denote the empirical distribution function

F̂T (z) = T�1
XT

s=1
I(Xs � z);

xt = F̂T (Xt) denotes the relative position of Xt in the sorted sequence X(1); : : : ; X(T ). The
sample median of the normalized ranks tends to 1=2 by construction, and when the sample is
large enough, JT must have the same value for fxtgTt=1 as it does for the original series fXtgTt=1.
The ranks are also invariant under monotone transformations of the series, so yielding the same
values for Xt = �2t and Xt = j�tj in particular.

Conventional approaches to measuring persistence, for levels or squares/absolute values as the
case may be, are based on the autocovariance sequence. There is particular interest in the property
of absolute summability of this sequence, often called weak dependence, with strong dependence
de�ning the non-summable case.2 Popular persistence measures based on the autocovariance
sequence are the so-called GPH log-periodogram regression estimators (for di¤erent bandwidths)
of the fractional persistence parameter d, originally due to Geweke and Porter Hudak (1983). In
principle, GPH estimators provide a test of the null hypothesis of weak dependence, although
they are well-known to be subject to �nite sample bias except under the null of white noise.

Our present interest is due to the fact that the long memory paradigm has proved popular in
volatility modelling, and GPH estimation can be validly performed on the normalized ranks of
a series regardless of the covariance stationarity property. The particular problem faced in the
context of nonstationary volatility is the existence of excessively in�uential outlying observations,
which may invalidate the usual assumptions for valid inference. Rank autocorrelations are free of
these in�uences and may focus more speci�cally on measuring persistence as characterized here.
We should emphasize, though, that our present concerns are not primarily hypothesis testing,
but rather to compare and rank di¤erent models according to their persistence characteristics.

To calibrate the performance of these alternative measures, we generated some pure fractional
series, otherwise known as I(d) processes, for a range of values of d, in samples of size T = 10; 000,
with 5000 pre-sample observations. However, the driving shocks were generated to have an �-
stable distribution with � = 1:8 and � = 1, where � is the skewness parameter. The series

2The well-known di¢ culty of discriminating between these cases in a �nite sample has recently been studied
in detail by one of the present authors, see Davidson (2009).
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d JT d̂ d̂R

0 0:498
(0:004)

�0:033
(0:061)

�0:002
(0:065)

0:3 0:663
(0:009)

0:281
(0:061)

0:330
(0:063)

0:5 0:835
(0:024)

0:496
(0:069)

0:544
(0:068)

0:7 0:948
(0:016)

0:718
(0:078)

0:741
(0:075)

0:9 0:985
(0:006)

0:921
(0:013)

0:986
(0:006)

1 0:992
(0:004)

0:985
(0:056)

0:976
(0:065)

Table 1: Persistence measures in a fractional linear time series, T=10,000. (Means of 100 repli-
cations with standard errors in parentheses.)

so constructed do not have second moments and super�cially resemble volatility series (after
centring) while having a conventional and well-understood linear dependence structure.

Three statistics were computed for these series: JT in (3.1), the GPH estimator with band-
width

p
T for the original series, and also the same GPH estimator for the series of normalized

ranks. The simulations were repeated 100 times and the means and standard deviations (in
parentheses) of the replications are recorded in Table 1, where d̂R denotes GPH for the ranked
data.

The JT statistics discriminate rather clearly between the independent case at one end of the
dependence spectrum and the strictly nonstationary unit root at the other. The GPH estimates
for the raw data in fact behave like consistent estimates of d, while the rank correlation-based
estimator appears biased upwards. This is a slightly counter-intuitive result that may or may
not be speci�c to the example considered. However, in our application we are seeking only to
rank models, in contexts where a parameter d with the usual linear property is not typically well
de�ned. (In particular, it does not correspond to the �d�appearing in FIGARCH and HYGARCH
models.) We carry this alternative along, chie�y, in a spirit of curiosity about the performance
of a seemingly natural measure in the context of an exploration of "long memory in volatility".

4 Some simulation experiments

In this section, we evaluate and compare the properties discussed in Section 2 in the GARCH(1,1)
and the "pure" HYGARCH/FIGARCH model. The respective data generation processes are of
the form �t =

p
htzt where zt � i:i:d:(0; 1) and either

ht = ! +

�
1� 1� �L

1� �L

�
�2t (4.1)

where � > 0 and 0 � � < min(1; �) or

ht = ! + �(1� (1� L)d)�2t (4.2)

where � > 0 and 0 < d � 1. (See e.g. Davidson (2004) for the context of these examples.)
In (4.1), which matches (1.2) on setting � = � + �, S = (� � �)=(1 � �); whereas in (4.2),
S = �. Setting � = 1 and � = 1, respectively, yields the covariance nonstationary IGARCH and
FIGARCH models, whereas setting these parameters strictly less than one implies covariance
stationarity.
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The simulations set a range of values for each of the parameter pairs (�; �) and (�; d). Co-
variance stationary cases are speci�ed having � = 0:8 and � = 0:8 respectively. We also simulate
nonstationary cases, with � = 1, � = 1:2 and � = 1, � = 1:2. For each of these cases, three values
of � and three values of d are chosen, being careful to note that the degree of volatility persistence
varies inversely with d (which is of course to be understood as a di¤erencing parameter, not an
integration parameter). For each of the nine parameter pairs selected, three di¤erent generation
processes for zt are compared: in decreasing order of kurtosis, these are the normalized Student
t(3), zSt(3) = t(3)=

p
3; the standard Gaussian, zG; and the normalized uniform distribution,

zU =
p
12(U [0; 1]� 1=2).

Tables 2 and 3 show the results for samples of size T = 10; 000, with 5000 pre-sample obser-
vations to account for any start-up e¤ects. The reported values are the averages of 100 Monte
Carlo replications of the generation process, with the replication standard deviations shown in
parentheses as a guide to the stability of these persistence indicators. The rows of the tables
show the following: �rst, the sample mean, sample median, and sample logarithmic mean of the
random sequences f	tgTt=1 as de�ned in (2.3); second, the values of JT for various series de�ned
in Section 2: the squared returns, the conditional volatilities ht, and also the remainder term
Rt = ht � ! � 	tht�1. The �nal columns of the tables show, for an alternative view of the
persistence, the GPH estimators based on the rank correlations of the squared returns.

The salient points of interest in these experimental results seem to us to be the following. First,
the relationships between the proximity of the mean of 	t (measuring S) to the corresponding
median,3 and also the proximity of the logarithmic mean to zero, and the measured persistence
of the squared returns. Second, we note that the measured persistence of Rt is in general much
lower than that of ht, con�rming the fact that 	t is the key determinant of persistence. Third,
we draw attention to the relative persistence of the squared returns and of the volatility series. In
the former case, for given � (or �), and given shock distribution, the median-crossing frequencies
(measured by 1 � JT ) actually rise as the lag decay rates decrease, either through � increasing,
or d decreasing. In other words, longer average lags imply less persistence. The reason for this
phenomenon has been discussed in Section 2, and the interesting observation is that this e¤ect
is large enough to counteract the increased persistence in volatility, ht, which is also observed.

Finally, we draw attention to the cases with � = 1:2 and � = 1:2, where instances of the
logarithmic mean exceeding zero are recorded. In the GARCH case, there is clearly a close
correspondence between this occurrence and the evidence that stationarity is violated, in the
sense that the median is crossed fewer than ten times in 10,000 steps. The necessary condition
(1.4) can also be checked out. Compare the estimated values of �E(log z2t ) for the three dis-
tributions, as reported in Section 2. When S = 3 so that log(S) = 1:09, which is the GARCH
case corresponding to � = 1:2 and � = 0:9, only the uniform distribution case actually violates
the necessary condition, but all the distribution alternatives appear nonstationary. All the HY-
GARCH examples appear stationary, although the uniform case with d = 0:5 appears the closest
to divergent.

The estimates of the fractional integration parameter in the last column of the tables are of
interest in re�ecting the persistence measured by JT quite closely, increasing across the range
with �, but are non-monotone with respect to d. Observe that, for the normal and uniform cases
in Table 3, the values obtained for d = 0:5 are generally greater than those for either d = 0:9 or
d = 0:1. When the volatility is covariance nonstationary these measures can be quite large, and
when it is strictly nonstationary, they fall close to unity. In a series of insightful papers, Mikosch
and St¼aric¼a (2003, 2004) argue that long range dependence of volatility in �nancial data should

3The medians are much better determined than the skewness coe¢ cients, which were also computed, but not
reported since they convey a very similar picture to the mean-median gaps.
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Model 	t JT dR

� � Dist�n Mean Median MeanLog �2t ht Rt �2t
0:8 0:1 St(3) 0:772

(0:119)
0:204
(0:004)

�1:630
(0:021)

0:571
(0:005)

0:634
(0:005)

0:468
(0:005)

�0:004
(0:070)

N 0:777
(0:011)

0:411
(0:007)

�1:015
(0:018)

0:613
(0:005)

0:662
(0:005)

0:460
(0:004)

�0:002
(0:076)

U 0:778
(0:007)

0:605
(0:011)

�0:746
(0:014)

0:639
(0:006)

0:677
(0:006)

0:469
(0:005)

0:006
(0:071)

0:4 St(3) 0:663
(0:065)

0:265
(0:005)

�1:286
(0:023)

0:553
(0:005)

0:748
(0:004)

0:634
(0:004)

�0:009
(0:078)

N 0:667
(0:009)

0:480
(0:009)

�0:788
(0:015)

0:576
(0:006)

0:751
(0:006)

0:615
(0:004)

0:014
(0:062)

U 0:666
(0:006)

0:594
(0:007)

�0:618
(0:011)

0:585
(0:006)

0:739
(0:006)

0:574
(0:005)

0:013
(0:061)

0:7 St(3) 0:329
(0:038)

0:182
(0:004)

�1:638
(0:021)

0:517
(0:005)

0:835
(0:004)

0:767
(0:004)

0:004
(0:072)

N 0:333
(0:004)

0:289
(0:004)

�1:262
(0:015)

0:519
(0:005)

0:809
(0:005)

0:729
(0:005)

�0:002
(0:058)

U 0:333
(0:003)

0:323
(0:003)

�1:176
(0:009)

0:521
(0:006)

0:774
(0:005)

0:675
(0:005)

0:014
(0:065)

1 0:1 St(3) 1:020
(0:262)

0:262
(0:006)

�1:379
(0:020)

0:588
(0:005)

0:650
(0:005)

0:474
(0:005)

0:002
(0:059)

N 1:001
(0:015)

0:530
(0:011)

�0:761
(0:014)

0:647
(0:007)

0:699
(0:006)

0:477
(0:004)

0:017
(0:056)

U 1:001
(0:010)

0:778
(0:015)

�0:495
(0:014)

0:693
(0:008)

0:740
(0:008)

0:495
(0:005)

0:049
(0:056)

0:5 St(3) 1:068
(0:857)

0:442
(0:010)

�0:769
(0:019)

0:575
(0:006)

0:809
(0:004)

0:693
(0:005)

0:008
(0:060)

N 0:997
(0:012)

0:768
(0:012)

�0:298
(0:016)

0:627
(0:008)

0:841
(0:006)

0:680
(0:005)

0:061
(0:073)

U 0:999
(0:008)

0:927
(0:009)

�0:158
(0:009)

0:671
(0:010)

0:866
(0:007)

0:642
(0:005)

0:189
(0:060)

0:9 St(3) 0:975
(0:098)

0:693
(0:018)

�0:290
(0:031)

0:553
(0:010)

0:953
(0:005)

0:900
(0:004)

0:279
(0:073)

N 0:998
(0:015)

0:954
(0:016)

�0:049
(0:013)

0:594
(0:022)

0:965
(0:005)

0:873
(0:005)

0:615
(0:074)

U 0:999
(0:008)

0:992
(0:008)

�0:022
(0:010)

0:629
(0:032)

0:971
(0:006)

0:844
(0:005)

0:729
(0:072)

1:2 0:1 St(3) 1:209
(0:180)

0:319
(0:007)

�1:176
(0:019)

0:607
(0:005)

0:669
(0:005)

0:480
(0:004)

0:004
(0:069)

N 1:224
(0:016)

0:648
(0:011)

�0:565
(0:015)

0:685
(0:007)

0:739
(0:007)

0:495
(0:005)

0:005
(0:068)

U 1:223
(0:012)

0:951
(0:018)

�0:294
(0:013)

0:760
(0:009)

0:807
(0:008)

0:517
(0:006)

0:050
(0:067)

0:5 St(3) 1:396
(0:188)

0:619
(0:013)

�0:428
(0:024)

0:617
(0:007)

0:843
(0:006)

0:708
(0:005)

0:054
(0:068)

N 1:400
(0:020)

1:080
(0:018)

0:037
(0:015)

0:840
(0:028)

0:952
(0:010)

0:714
(0:006)

0:574
(0:094)

U 1:399
(0:010)

1:299
(0:013)

0:178
(0:009)

0:994
(0:003)

0:998
(0:001)

0:779
(0:025)

0:999
(0:025)

0:9 St(3) 3:025
(0:381)

2:090
(0:055)

0:810
(0:034)

0:999
(0:001)

1:000
(0:001)

1:000
(0:001)

0:959
(0:099)

N 2:999
(0:044)

2:867
(0:048)

1:045
(0:016)

1:000
(0)

1:000
(0)

1:000
(0)

0:991
(0:047)

U 2:998
(0:026)

2:976
(0:028)

1:078
(0:009)

1:000
(0)

1:000
(0)

1:000
(0)

1:019
(0:010)

Table 2: Series properties and persistence measures for the GARCH(1,1) model
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Model 	t JT dR

� d Dist�n Mean Median MeanLog �2t ht Rt �2t
0:8 0:9 St(3) 0:805

(0:140)
0:218
(0:005)

�1:418
(0:027)

0:571
(0:005)

0:634
(0:007)

0:656
(0:016)

0:018
(0:073)

N 0:800
(0:011)

0:412
(0:008)

�0:898
(0:016)

0:614
(0:005)

0:655
(0:006)

0:608
(0:007)

0:030
(0:073)

U 0:801
(0:008)

0:622
(0:012)

�0:678
(0:012)

0:642
(0:006)

0:669
(0:007)

0:570
(0:006)

0:018
(0:068)

0:5 St(3) 0:797
(0:091)

0:422
(0:012)

�0:738
(0:030)

0:556
(0:006)

0:785
(0:012)

0:738
(0:020)

0:172
(0:093)

N 0:800
(0:011)

0:614
(0:010)

�0:432
(0:016)

0:577
(0:006)

0:754
(0:008)

0:656
(0:007)

0:157
(0:078)

U 0:798
(0:007)

0:710
(0:009)

�0:345
(0:010)

0:585
(0:006)

0:722
(0:007)

0:599
(0:005)

0:134
(0:070)

0:1 St(3) 0:765
(0:079)

0:611
(0:030)

�0:400
(0:056)

0:523
(0:007)

0:873
(0:017)

0:809
(0:012)

0:224
(0:101)

N 0:778
(0:010)

0:730
(0:010)

�0:279
(0:014)

0:524
(0:005)

0:797
(0:010)

0:732
(0:006)

0:143
(0:066)

U 0:779
(0:006)

0:763
(0:007)

�0:266
(0:008)

0:525
(0:005)

0:753
(0:013)

0:666
(0:005)

0:149
(0:062)

1 0:9 St(3) 0:980
(0:120)

0:271
(0:005)

�1:199
(0:020)

0:588
(0:005)

0:656
(0:007)

0:673
(0:016)

0:043
(0:073)

N 1:002
(0:013)

0:516
(0:011)

�0:674
(0:016)

0:648
(0:007)

0:702
(0:010)

0:648
(0:014)

0:105
(0:083)

U 1:001
(0:008)

0:777
(0:013)

�0:453
(0:014)

0:695
(0:009)

0:741
(0:011)

0:619
(0:011)

0:166
(0:062)

0:5 St(3) 0:993
(0:117)

0:528
(0:016)

�0:507
(0:035)

0:575
(0:009)

0:818
(0:017)

0:760
(0:023)

0:291
(0:086)

N 0:999
(0:014)

0:767
(0:011)

�0:207
(0:014)

0:622
(0:019)

0:832
(0:024)

0:696
(0:015)

0:410
(0:087)

U 0:999
(0:009)

0:887
(0:012)

�0:122
(0:009)

0:651
(0:022)

0:838
(0:026)

0:635
(0:010)

0:468
(0:085)

0:1 St(3) 0:995
(0:306)

0:769
(0:047)

�0:172
(0:067)

0:536
(0:013)

0:893
(0:022)

0:820
(0:016)

0:352
(0:107)

N 0:976
(0:013)

0:914
(0:012)

�0:057
(0:013)

0:537
(0:006)

0:855
(0:021)

0:744
(0:006)

0:304
(0:058)

U 0:973
(0:007)

0:953
(0:007)

�0:042
(0:009)

0:538
(0:006)

0:839
(0:024)

0:682
(0:006)

0:344
(0:060)

1:2 0:9 St(3) 1:183
(0:129)

0:326
(0:007)

�1:013
(0:023)

0:606
(0:005)

0:682
(0:009)

0:693
(0:020)

0:083
(0:089)

N 1:198
(0:015)

0:617
(0:012)

�0:496
(0:015)

0:702
(0:027)

0:780
(0:033)

0:716
(0:034)

0:305
(0:116)

U 1:201
(0:010)

0:932
(0:015)

�0:271
(0:014)

0:830
(0:041)

0:895
(0:033)

0:751
(0:022)

0:562
(0:101)

0:5 St(3) 1:211
(0:242)

0:631
(0:021)

�0:322
(0:033)

0:620
(0:032)

0:871
(0:030)

0:792
(0:024)

0:431
(0:121)

N 1:193
(0:018)

0:916
(0:015)

�0:023
(0:014)

0:929
(0:034)

0:979
(0:013)

0:721
(0:010)

0:966
(0:047)

U 1:193
(0:010)

1:062
(0:013)

0:063
(0:008)

0:977
(0:010)

0:992
(0:005)

0:683
(0:009)

1:004
(0:013)

0:1 St(3) 1:148
(0:104)

0:917
(0:041)

0:010
(0:057)

0:574
(0:047)

0:925
(0:026)

0:827
(0:011)

0:454
(0:130)

N 1:167
(0:015)

1:094
(0:014)

0:125
(0:013)

0:643
(0:029)

0:956
(0:013)

0:788
(0:014)

0:643
(0:058)

U 1:168
(0:009)

1:144
(0:010)

0:141
(0:009)

0:686
(0:024)

0:964
(0:010)

0:792
(0:019)

0:695
(0:056)

Table 3: Series properties and persistence measures for the HY/FIGARCH model
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be attributed to structural breaks in the unconditional variance, rather than to GARCH-type
dynamics. However, it is clear that apparent long range dependence can be observed in the
stationary cases simulated here. We would agree with these authors that the evidence of long-
range dependence is spurious, in the sense that it is not generated by a fractionally integrated
structure, as it is in Table 1 for example. However, our diagnosis of the cause does not invoke
structural breaks. Rather, we see it as a phenomenon analogous to having an autoregressive root
local to unity in a levels process, leading to Ornstein-Uhlenbeck-type dynamics which are easily
confused with long memory in �nite samples. However, the analogy is necessarily a loose one in
view of the special features of the volatility process which we have detailed in Section 2.

5 Implications for volatility forecasting

When using models of the ARCH/GARCH class for volatility forecasting two or more steps
ahead, the usual methodology is to apply the standard recursion for a minimum mean squared
error (MSE) forecast, with �2T+j for j > 0 replaced by its (assumed) conditional expectation.
Among many references describing this technique see for example Poon (2005) page 39 and also
the Eviews 8 User Guide (2013), page 218, for a practical implementation.

In other words, if ht is de�ned by (1.1) (and implicitly assuming the parameters are replaced
by appropriate estimates) we would replace �2t by Et�1�

2
t = ht, and so set4

ĥt+1jt�1 = ! + �1ht +
X1

j=2
�j�

2
t�j+1: (5.1)

The volatility forecast error accordingly has the form

ft+1jt�1 = ht+1 � ĥt+1jt�1
= �1(�

2
t � ht)

= �1ht(z
2
t � 1): (5.2)

In the general k-step ahead case,

ĥt+kjt�1 = ! +
Xk�1

j=1
�j ĥt�j+kjt�1 + �kht +

X1

j=k+1
�j�

2
t�j+k: (5.3)

and so
ft+kjt�1 =

Xk�1

j=1
�jft�j+kjt�1 +

Xk

j=1
�jht�j+k(z

2
t�j+k � 1) (5.4)

For example, consider the GARCH(1,1) model in (4.1) which rearranges as

ht+1 = !(1� �) + [(� � �)z2t + �]ht:

If z2t is replaced by Et�1z
2
t = 1 to construct the forecast, (5.2) reduces to

ft+1jt�1 = (� � �)ht(z2t � 1):

The problem with this formulation, as the preceding analysis demonstrates, is that due to the
skewness of the distribution of z2t , the mean may not be the best measure of central tendency.
The persistence of the process, and hence its forecastability, will be exaggerated by this choice. In
e¤ect, the problem is closely allied to that of forecasting in model (2.8) by using S as the forward
projection for unobserved 	t. S is not the value that 	t is close to with highest probability, and

4We call this expression the two-step volatility forecast since ht itself is of course the one-step forecast.
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hence the one that will deliver an accurate projection with high probability. The majority of
volatility forecasts will be �overshoots�, balanced by a smaller number of more extreme �under-
shoots�. The forecast is unbiased in the sense E(ft+kjt�1) = 0 when this expectation is de�ned,
but this condition excludes the IGARCH and FIGARCH and other nonstationary cases. Even
if the mean squared forecast error is de�ned, in this context, it is not clear that the MSE is an
appropriate loss function.

We investigated this issue experimentally with the results reported in Tables 4 and 5 for the
GARCH(1,1) and pure HY/FIGARCH models respectively. We studied the distribution of errors
in the two-step forecasts constructed under di¤erent assumptions about the appropriate measure
of central tendency of the shocks, denoted by M in the de�nition

ft+1jt�1 = �1ht(z
2
t �M): (5.5)

The median absolute values (MAVs) of the variables de�ned in (5.5) were computed for six
choices of M . In the tables, the minimum value of the MAV in each row is indicated in boldface.
Note that in only two of these cases does M exceed 0:5 and in both, the di¤erence from the
adjacent lower value is minimal. The rule that M = 0:1 gives the best result for the Student(3)
case, M = 0:3 for the Gaussian case and M = 0:5 for the uniform case appears to hold quite
generally. The implication may be that future volatility is signi�cantly overstated by conventional
procedures.

We can reasonably assume that the optimal M values are those closest to the modes of
the respective distributions. While estimating the mode of an empirical distribution is not a
straightforward procedure, constructing medians is easy and the medians of our squared normal-
ized distributions, estimated from samples of size 10,000, are 0.763 for the uniform, 0.423 for the
Gaussian and 0.176 for the Student(3). In default of a more precise analysis, a rough and ready
rule of thumb would be to estimate the MAV-minimizing M by 2/3 times the sample median of
the normalized residuals. This corresponds to computing the k-step volatility forecasts by the
recursion

ĥt+kjt�1 = ! + 2
3Median(z

2
t )
Xk

j=1
�j ĥt�j+kjt�1 +

X1

j=k+1
�j�

2
t�j+k: (5.6)

where ĥtjt�1 = ht.

A more extensive simulation study than the present one would be needed to con�rm this
recommendation. We do note, however, that the rule would apply successfully in both the
covariance stationary and the covariance nonstationary cases that have been simulated here.
Although ht has the interpretation of a conditional variance only in the stationary case, note
that the problem we highlight is not connected with the non-existence of moments. It is entirely
a matter of adopting a minimum MSE estimator of a highly skewed distribution, such that the
outcome is overestimated in a substantially higher proportion of cases than it is underestimated.

6 Concluding Remarks

In this paper we have investigated the dynamics of certain conditional volatility models with a
view to understanding their propensity to predict persistent patterns of high or low volatility.
Understanding how persistence depends on the various model characteristics, while intriguing and
often counterintuitive, is perhaps a matter of mainly theoretical interest. However, there is also
an important message here for practitioners. Conventional forecasting methodologies that are
optimal under the assumption of symmetrically distributed shocks may be viewed as overstating
the degree of future volatility. This is, of course, an issue essentially of the preferred choice of
loss function. Practitioners may validly elect to favour the unbiasedness and minimum MSE
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Model M
� � Dist�n 1 0.9 0.7 0.5 0.3 0.1
0:8 0:1 St(3) 0:070 0:063 0:049 0:035 0:020 0 :010

N 0:078 0:070 0:054 0:041 0 :032 0:047
U 0:091 0:083 0:071 0 :066 0:085 0:121

0:4 St(3) 0:171 0:153 0:118 0:084 0:052 0 :028
N 0:204 0:185 0:148 0:115 0 :090 0:111
U 0:232 0:216 0:184 0 :162 0:176 0:246

0:7 St(3) 0:073 0:065 0:050 0:036 0:022 0 :010
N 0:076 0:069 0:055 0:041 0 :028 0:034
U 0:076 0:070 0:058 0:046 0 :045 0:065

1:0 0:1 St(3) 0:094 0:084 0:064 0:045 0:028 0 :015
N 0:122 0:110 0:088 0:069 0 :061 0:085
U 0:184 0:174 0 :160 0:161 0:193 0:257

0:5 St(3) 0:338 0:303 0:234 0:168 0:108 0 :069
N 0:693 0:637 0:536 0:446 0 :386 0:410
U 1:198 1:150 1:076 1 :034 1:067 1:248

0:9 St(3) 0:246 0:221 0:173 0:127 0:085 0 :054
N 1:118 1:033 0:876 0:734 0:621 0 :592
U 2:352 2:267 2:109 1:984 1 :932 2:103

Table 4: MAV 2-step forecast error in GARCH(1,1), against M (see(5.5))

Model M
� d Dist�n 1 0.9 0.7 0.5 0.3 0.1
0:8 0:9 St(3) 0:038 0:034 0:026 0:018 0:011 0 :005

N 0:043 0:039 0:030 0:023 0 :017 0:026
U 0:050 0:046 0:039 0 :036 0:048 0:068

0:5 St(3) 0:156 0:140 0:108 0:078 0:049 0 :027
N 0:216 0:196 0:157 0:122 0 :094 0:114
U 0:244 0:226 0:192 0 :166 0:182 0:257

0:1 St(3) 0:053 0:047 0:036 0:026 0:016 0 :007
N 0:055 0:049 0:039 0:029 0 :019 0:024
U 0:053 0:049 0:041 0:032 0 :031 0:045

1:0 0:9 St(3) 0:050 0:045 0:034 0:024 0:014 0 :008
N 0:073 0:066 0:053 0:041 0 :036 0:050
U 0:116 0:110 0 :101 0 :101 0:120 0:161

0:5 St(3) 0:300 0:269 0:208 0:150 0:097 0 :060
N 1:382 1:271 1:060 0:874 0 :734 0:751
U 3:862 3:688 3:372 3 :164 3:198 3:838

0:1 St(3) 0:429 0:384 0:298 0:216 0:138 0 :076
N 0:663 0:603 0:488 0:379 0 :279 0:314
U 0:658 0:614 0:526 0:440 0 :419 0:599

Table 5: MAV 2-step forecast error in HY/FIGARCH, against M (see(5.5))
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properties over minimizing the MAV. They should nonetheless not overlook the fact that the
usual rationale for the former criterion implicitly assumes a Gaussian framework, and is arguably
inappropriate in the context of predicting volatility.

A Appendix: Proofs

A.1 Proof of Proposition 2.1

First, consider the case of where f jtg is replaced by f jg, a nonstochastic sequence of coe¢ cients.
Then

ht = ! +
1X
j=1

 jht�j (A-1)

with ! > 0 and  j � 0 for all j � 1 has a stable, positive solution if and only if this is true of
the equation

h�t = ! +

0@ 1X
j=1

 j

1Ah�t�1: (A-2)

Stable solutions of (A-1) and (A-2), if they exist, are both of the form

!

1�
P1
j=1  j

> 0

implying in both cases the necessary and su¢ cient condition

1X
j=1

 j < 1: (A-3)

Next, consider the stochastic sequence f jtg. Let this be randomly drawn at date t0, as the
functional of the random sequence fzt0�j ; j > 0g, and then let a step be taken according to either
equation (2.1) or equation (2.8). Call this in either case a convergent step if

P1
j=1  jt0 = 	t0 < 1.

That is, if the process is allowed to continue with this same �xed drawing, the sequence of steps
so generated must approach the particular solution

h0 =
!

1�	t0
: (A-4)

This is a drawing from the common distribution of stable solutions, which are almost surely �nite.
Suppose that every step taken is convergent, in this sense. Then, the sequence is always

moving so as to reduce its distance from some point in the distribution of stable solutions. It
therefore cannot diverge. More generally, let each step have a certain �xed probability of being
convergent. The probability that the sequence diverges can be reduced to zero by setting this
probability high enough. This is, from elementary considerations, a su¢ cient condition for fh�t g
to be �nite almost surely.

To show that the same condition is su¢ cient for fhtg generated by (2.1) to be �nite almost
surely, �rst note that the step de�ned by (2.8) can be written for given 	t0 in the form

�h�t = (	t0 � 1)(h�t�1 � h0): (A-5)

In this representation, the condition for a convergent step is that �h�t and h
�
t�1�h0 have di¤erent

signs. Now write the BN form (2.6) in the equivalent representation, as

�ht = (	t0 � 1)(ht�1 � h0) +R0t (A-6)
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where the remainder, like 	t0 , is speci�ed for the particular shock sequence fzt0�j ; j > 0g as

R0t =

1X
k=1

 �kt0�ht�k: (A-7)

In this case, 	t0 < 1 does not imply �ht(ht�1 � h0) < 0 since the sign of �ht also depends on
R0t .

For the case ht�1 > h0, consider the circumstances in which R0t > 0. Rearrangement of the
sum (A-7) leads to

R0t = �
1X
k=2

�kz
2
t0�k(ht�1 � ht�k)

so that a necessary condition for R0t > 0 is that ht�1 < ht�k for at least one value of k > 1. This
shows that with 	t0 < 1 a sequence fhtg generated by (A-6) can never diverge, and is almost
surely �nite. Conversely, if ht�1 < h0 the necessary condition for R0t < 0 is ht�1 > ht�k for at
least one k > 1, although this case is not critical to the property P (ht <1) = 1.

A.2 Proof of Proposition 2.2

The solution of (2.8) is

h�t = !

 
1 +

1X
m=1

m�1Y
k=0

	t�k

!
: (A-8)

Since
P1
j=0 �j < 1 and the sequence

nPm
j=1 �jz

2
t�j ;m � 1

o
is monotone, 	t is a measurable

function of fzs;�1 < s < tg by (e.g.) Davidson (1994), Theorems 3.25 and 3.26. The sequence
f	t;�1 < t <1g is therefore strictly stationary and ergodic.5 It follows by the ergodic theorem
that

1

m

m�1X
k=0

log	t�k
a:s:! �: (A-9)

Hence, with probability one,

lim sup
m!1

e�m�
m�1Y
k=0

	t�k <1

for �1 < t < 1. There therefore exists N < 1 such that h�t = h�1t + O(eN�) with probability
1, where

h�1t = !

 
1 +

NX
m=1

m�1Y
k=0

	t�k

!
: (A-10)

The remainder term can be made as small as desired by taking N large enough, and (A-10) is
a measurable function of fzs;�1 < s < tg by (e.g.) Davidson (1994) Theorem 3.25. Strict
stationarity and ergodicity of fh�t ;�1 < t <1g follows, completing the proof.

5Nelson (1990) cites Theorem 3.5.8 of Stout (1974) in support of a comparable assertion to this one. While the
conditions do not precisely correspond, Phillips (1988) Section 1.15 provides a concise proof for the general case of
doubly-in�nite sequences.
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