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Abstract

The so-called type I and type II fractional Brownian motions are limit distributions asso-
ciated with the fractional integration model in which pre-sample shocks are either included
in the lag structure, or suppressed. There can be substantial differences between the distri-
butions of these two processes and of functionals derived from them, so that it becomes an
important issue to decide which model to use as a basis for inference. Alternative methods for
simulating the type I case are contrasted, and for models close to the nonstationarity bound-
ary, truncating infinite sums is shown to result in a significant distortion of the distribution.
A simple simulation method that overcomes this problem is described and implemented. The
approach also has implications for the estimation of type I ARFIMA models, and a new
conditional ML estimator is proposed, using the annual Nile minima series for illustration.

1 Introduction

The literature on long memory processes in econometrics (for recent examples, see inter alia Jo-
hansen and Nielsen (2008), Caporale and Gil-Alana (2008), Coakley, Dollery and Kellard (2008),
Haldrup and Nielsen (2007)) has adopted two distinct models as a basis for the asymptotic
analysis, the limit processes specified being known respectively as type I and type II fractional
Brownian motion (fBM). These processes have been carefully examined and contrasted by Mar-
inucci and Robinson (1999). When considered as real continuous processes on the unit interval,
they can be defined respectively by

r 0
X0) = gy |, =948 + g [ =9 = (=9aBe) ()
and
X0) = oy [ (- 9)aB) (1.2)
I'd+1) /o ’

where —% <d< % and B denotes regular Brownian motion. In other words, in the type II case
the second term in (1.1) is omitted. It will be convenient to write the decomposition

X =X*4+ X (1.3)
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where X**(r) is defined as the second of the two terms in (1.1). The processes X* and X** are
Gaussian, and independent of each other, so we know that the variance of (1.1) will exceed that
of (1.2). As shown by Marinucci and Robinson (1999), the increments of (1.1) are stationary,
whereas those of (1.2) are not.

These processes are commonly motivated by postulating realizations of size n of discrete
processes and considering the weak limits of normalized partial sums, as n — oco. Define

zy = (1— L) %y (1.4)
where we assume for the sake of exposition that {u;}> is an i.i.d. process with mean 0 and
variance o2, and

e .
1-L) "= bl (1.5)
j=0
where, letting I'(-) denote the gamma function,
I'(d+j)
b = YA 1.6

7 T(d)(1+ ) (1.6)

Defining the partial sum process
1 [nr]
Xn(T) = o_n1/2+d ;l‘t (17)

it is known that X, 4 x , where 2 Jenotes weak convergence in the space of measures on Djg yj,
the space of cadlag functions of the unit interval equipped with the Skorokhod topology. (See for
example Davidson and de Jong 2000). On the other hand, defining

uf = 1(t > 0)uy (1.8)

and z} as the case corresponding to z; in (1.4) when u} replaces u;, and then defining X like

(1.7) with z} replacing x, it is known that X < X+ (Marinucci and Robinson 2000).

The model in (1.8) is one that is often used in simulation exercises to generate fractionally
integrated processes, as an alternative to the procedure of setting a fixed, finite truncation of the
lag distribution in (1.4), common to every t. However, from the point of view of modelling real
economic or financial time series, model (1.8) is obviously problematic. There is, in most cases,
nothing about the date when we start to observe a series which suggests that we ought to set all
shocks preceding it to 0. Such truncation procedures are common in time series modelling, but
are usually justified by the assumption that the effect is asymptotically negligible. In this case,
however, where the effect is manifestly not negligible in the limit, the choice of model becomes a
critical issue.

The setting for this choice is the case where a Monte Carlo simulation is to be used to construct
the null distribution of a test statistic postulated to be a functional of fBM. If model (1.8) is
used to generate the artificial data, then the distribution so simulated will be the Type II case.
However, if the observed data ought to be treated as drawn from (1.4), then the estimated critical
values will be incorrect even in large samples. It then becomes of importance to know how large
this error is.

Section 2 of the paper reviews and contrasts the main properties of these models. A leading
difficulty in working with the type I model is to simulate it effectively, and as we show in Section
3, the fixed lag truncation strategy is not generally effective, except by expending a dramatically



large amount of computing resources. Since type I fBM has a harmonizable representation,
another suggestion has been to use this to simulate the model, and then use a fast Fourier
transform to recover the data in the time domain. However, we also show that this method
cannot function effectively without large resources. Methods for generating type I processes
do exist, for example circulant embedding and wavelet aproximations, but these are relatively
difficult to implement in an econometric context. In Section 4 we suggest a new simulation
method for type I processes, whose computational demands are trivial, and being implemented
in the time domain adapts naturally to econometric modelling applications. The method is highly
accurate when the data are Gaussian, and is always asymptotically valid.

Finally, we point out in Section 5 how the same approximation technique can be used to
estimate ARFIMA time series models under the assumption that the true processes are of type I.
This is in contrast to the usual time domain estimation by least squares, or conditional maximum
likelihood, where the necessity of truncating lag distributions to match the observed data series
implicitly (and perhaps inappropriately) imposes restrictions appropriate to the type II case.
The method entails fitting some constructed regressors, whose omission will potentially bias the
estimates in finite samples. The technique is illustrated with an application to the well-known
series of annual Nile minima. Section 6 concludes the paper. Proofs are contained in Appendix
A, and Appendix B exhibits some simulations of representative fractional Brownian functionals,
under the two definitions.

The computations in this paper were carried out using the package Time Series Modelling 4
(Davidson 2008) which runs under the Ox 4/5 matrix programming system (Doornik 2006).

2 Properties of Fractional Brownian Motions

Our first task is to identify and contrast the distributions represented by (1.1) and (1.2). Since
these are Gaussian with means of zero, this is simply a matter of determining variances and
covariances of increments, and since

X(r1)X(r2) = 3 [X(r1)” + X(r2)® — (X(r2) — X(r1))?]

a formula for the variance of an increment X (r9) — X (r1) is sufficient to identify the complete
covariance structure. It will further suffice, to motivate our discussion, to consider just the cases
r1 =0 and ro =7 € (0, 1]. The formula

EX(r)* = V(d)r**!

where

Vu*‘rui1p(mﬁ+1+4w“l+”d—”fm> (2.1)

is given by Mandelbrot and Van Ness (1968). However, for this formula to be operational a closed
form for the integral in the second term is necessary. As we remark in the sequel, conventional
numerical evaluations may suffer major inaccuracies. A proof of the closed-form representation

(1 - 2d)
(2d + 1)I(1 + d)T'(1 — d)

V(d) = (2.2)

is given in Davidson and Hashimzade (2008). By contrast, the variance in the type II case is
found by elementary arguments as

EX*(T’)Q _ V*(d)'l"2d+1



Figure 1: Plots of V' (solid line) and V* (dashed line) over (—0.5,0.5)

where
1

(2d+ 1)I(d+ 1)2°

Plotting these formulae as functions of d (Figure 1) is the easiest way to see their relationship,
and it is clear that, particularly for values of d close to 0.5, the differences can be substantial.
While V' diverges as d — 0.5, V* is declining monotonically over the same range, so that the
variance of the second term in (1.1) comes to dominate that of the first term to an arbitrary
degree.

It is easy to see how the distributions of functionals such as fol Xdr and fol X2dr will differ
correspondingly for these two models. The other important random variables arising in the
asymptotic theory of estimators are stochastic integrals. Expressions of the form fol X1dX, arise
in the limit distributions of regression errors-of-estimate in models involving nonstationary series
and possible long-memory error terms. The location parameter of this random variable is an
important contributor to the degree of bias in the regression. We have studied the distribution
theory for type I processes in both the harmonic and time domain representations, and we show in,
respectively, Proposition 4.1 of Davidson and Hashimzade (2008) and Proposition 3.2 of Davidson
and Hashimzade (2009) that

Vi(d) =

F(l — d1 — dg) Sinﬂ'dg
m(dy +do)(1+dy + da)’

1
E/ X1dXs = 019
0

where 019 is the appropriately defined scale parameter. On the other hand, by constructing the
expectation as the limit of the normalized finite sum, we can quite easily show the following for
type II processes X{ and X3.

o12d2
(1+di+d2)(d1 4+ d2)T (1 + di)L(1+ da)

Proposition 2.1 Efol X;jdX3 =

In Figure 2 we show plots of these expressions, as dz varies over the interval [0, %), for o192 =1
and fixed d; = 0.4.
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Figure 2: Efol X1dX5 (solid line) and E fol X7dX3 (dashed line) as functions of dg, with 015 = 1,
di =04

These large discrepancies clearly pose a very important issue - which of these models is the
more appropriate for use in econometric inference? Marinucci and Robinson (1999) remark:

“It is of some interest to note that [type II fBM] is taken for granted as the proper
definition of fractional Brownian motion in the bulk of the econometric time series
literature, whereas the probabilistic literature focuses on [type I fBM] This dichotomy
mirrors differing definitions of nonstationary fractionally integrated processes...”

The feature of the type II model this last remark evidently refers to is that it incorporates the
conventional integer integration models (I(1), I(2), etc.) neatly into a general framework. Letting
d increase from 0 up to 1, and then 2 and beyond, yields a continuum of models, all nonstationary,
but with continuously increasing ‘memory’. An I(1) model cannot be allowed to have an infinitely
remote starting date, but must be conceived as a cumulation of increments initiated at date t = 1,
with an initial condition xg that must be generated by a different mechanism. The view that
this construction should apply seamlessly to the whole class of I(d) models leads naturally to the
type II framework.

On the other hand, the type I framework requires us to keep cumulation (integer integration)
and stationary long memory in conceptually separate compartments. In this view, a cumulation
process must be assigned a finite start date, but its increments should then form a stationary
sequence. In any autoregressive process, whether weakly or strongly dependent, stationarity
combined with the assumption that the distribution is generated from i.i.d. shocks imposes a de-
pendence on all past shocks, and in the case of long memory it implies non-negligible dependence
on the ‘infinite’ past. This might appear unrealistic. However, we should not lose sight of the
fact that this simple mathematical model is not necessarily the actual mechanism that ‘nature’
chooses to create sequences of data. The shocks are no more than the fictional concomitant of
writing a stationary generation process in linear form. In practice, all we have to account for is
the joint distribution of the finite sequence of sample increments. Stationarity of this distribution,
in the linear fractional framework, implies the type I model.



By contrast, the type II model implies nonstationary increments of which the marginal dis-
tributions are dependent on the date relative to the start of the observed sample. This gives rise
to a much less appealing data description. All realizations of the process would have to be found
at, or very close to, the unconditional mean of the process (i.e., 0) whenever we start to observe
them. The obvious counterfactual is provided by discarding some initial observations from any
process so generated which, obviously, produces a process requiring a description different from
type 2. In practice there are plenty of nonlinear mechanisms that might generate stationary frac-
tional processes well described by models of the ARFIMA class, of which the leading examples all
involve some type of aggregation across units/agents. See for example Davidson and Sibbertsen
(2005), Granger (1980), and also Byers, Davidson and Peel (1997, 2002) for an application.

The considerations we discuss here are a universal feature of time series modelling, but it has
generally been possible to neglect them because the effects are of small order relative to sample
size. This is true both in weakly dependent processes and in simple integrated processes. Long
memory models are different, since choosing the wrong descriptive framework has asymptotic
consequences, and exposes us to the hazard of incorrect inferences even in large samples. The
practical value of asymptotic theory for fractionally integrated processes can only be to derive test
statistics that must, in practice, be tabulated by simulation. This effort is of course compromised
if the distributions we tabulate are different from those generated by ‘nature’. If it is believed
that the latter should realistically be treated as of type I, a suitable simulation algorithm becomes
an essential prerequisite of useful research in this area. In the next section we review existing
simulation methods, considering in particular the type of processes that they generate, and then
go on to propose a new strategy which is simple to implement and appears very effective in
practice.

3 Simulation Strategies For Type I Processes

Beran (1994) offers a number of suggestions for simulating long memory processes, in such a way
as to reproduce the correct autocorrelation structure. However, he does not address the issues of
stationarity and the role of presample influences. In this section we examine these methods, and
others, with these issues in mind.

3.1 Using Presample Lags

A general procedure for generating a fractionally integrated series of length n is to apply, for
t=1,...,n and some fixed m, the formula

m+t—1

Ty — Z bjut_j, (31)
7=0

where {ui_y,...,u,} is a random sequence of suitable type, and {b;,j = 0,...,m +t — 1}
is defined by (1.6). In the experiments reported in this paper, {u;} is always i.i.d. standard
Gaussian. Choosing m = 0 and taking the formula in (1.7) to the limit will yield a type II
process, as noted above. On the other hand, by choosing m large enough we should be able to
approximate the type I process to any desired degree of accuracy. Note that the fixed lag length
strategy of replacing m+t —1 by m as the upper limit in (3.1) yields a stationary process, which
might be viewed as desirable when attempting to approximate the true case m = oo. However,
it is clear that when m is large enough to achieve a good approximation, it is also large enough
that the difference between the two cases is negligible. Therefore we do not consider this latter
case explicitly.



m 0 1000 3000 6000 9000
SD 0.843 0.996 1.036 1.108 1.137

Table 1: SDs of Terminal Values: Extended Lag Representation

Table 1 shows the standard deviations in 10,000 replications of the terminal points X, (1) of
the process in (1.7) where x; is generated by the model in (3.1) where d = 0.4, and n = 1000.
For comparison, note the theoretical values: /V(0.4) = 1.389 and /V*(0.4) = 0.8401. The
coefficients converge so slowly, for values of d in this region, that the length of the presample
needed for a close approximation to the type I process is infeasibly large.

3.2 Harmonic Representation

When w; is i.i.d. Gaussian, the process z; defined by (1.4) has the harmonic representation

2 = \/% / : it (1 - e*M) W), (3.2)

where ¢ is the imaginary unit and W is a complex-valued Gaussian random measure with the
properties

W (—d\) = W (dN)
E(W(dX)) =0

(AN p=2A
E(W(d\)W (du)) :{ 0 ot}/ferwise.

This process is stationary by construction. It is also shown in Davidson and Hashimzade (2008,
Theorem 2.2) that the weak limit defined by (1.7) applied to the process (3.2) is type I fractional

Brownian motion.
Therefore, we investigate a discrete form of (3.2) as a framework for simulation. Letting

g(\) = <1 - e_i’\) - (3.3)

denote the transfer (frequency response) function of the process, define a sequence g, by evaluating
g at A\, = wk/m , where m > n is a suitably chosen power of 2. In principle, we can use the fast
Fourier transform (FFT) to evaluate

m—1
o ARt
Ty = e We, t=0,...,m—1 3.4
Y ;e k; 9k W (3.4)
=1-m
after setting

W — U +iVi, >0

FTl U —iVi, k<0
where (Ug, Vi, k = 0,...,m — 1) are independent standard Gaussian pairs. Then take z; for
t=m-—mn,...,m— 1 to provide the generated sample of length n. Note that the model is easily

generalized to include (e.g.) ARMA components, by simply augmenting g with multiplicative
factors. While the sequence gj from (3.3) can be evaluated in closed form as

= (20 2) ™ o (E20) i (=20 5



for |[k| > 0, there is an evident difficulty due to the singularity at zero. A natural way to achieve
a discrete approximation is to replace (3.3) with its series expansion

g(A) = ije_i/\ja

J=0

where b; is defined by (1.6). Evaluating (3.4) by replacing this infinite sum with the sum truncated
at m terms will approach the limit (3.2) in just the right way, and the FFT can be used here
too, for speedy evaluation. By taking m large enough we should, in principle, be able to compute
type I fBM to any desired degree of accuracy.

However, Table 2 shows the standard deviation of X,,(1) in 10,000 replications of this simu-
lation method for the case d = 0.4, also setting 02 = 1 and n = 1000. As before, we find that

m 1000 5000 10,000 20,000
SD 1.106 1.128 1.166  1.200

Table 2: SDs of Terminal Values, Harmonic Representation

the increase in the SD as m is increased is extremely slow, and remains a long way from the type
1 SD of 1.389, even with infeasibly large m. This method evidently suffers from an essentially
similar problem to the time domain moving average method.

3.3 Choleski Method and Circulant Embedding

Another approach is to base the simulation on reproducing the known autocorrelation structure
of the increments. Let §2,, denote the covariance matrix of the vector @, = (z1,...x,)". Given
formulae for v(k) = E(zyxi—i) for k = 0,...,n — 1, §2, is easily constructed as the Toeplitz
matrix with kth diagonals set to (k). If K,, represents the Choleski decomposition, such that
2, = KnK;I, and z, = (21,...2,) is a standard normal vector, then K, z, is a stationary
sequence having the same distribution as x, (exactly) in the case that u; is Gaussian. The
process (1.7) must therefore converge to type I {BM.

For the case where z; is generated by (1.4) where u; is 1.i.d(0, %), we have the well-known

formula:

(k) = oI'(1 —2d) T (k + d) sin (7d)
F'(k+1—-d) T
see e.g. Granger and Joyeux (1980), Sowell (1992). It is straightforward to extend this calculation
to the ARFIMA (p, d, q) case using the formulae given by Sowell (1992). It could even be extended
to the multivariate case by computing the block-Toeplitz matrix of the cross-autocorrelations,
but for large samples this procedure would be computationally challenging.
An alternative way to base the simulation on the covariances is by the circulant embedding
method, as described in Davies and Harte (1987) for example. Let v (2n + 1 x 1) denote the
discrete Fourier transform (DFT) of the sequence

’7(0)3 s 77(” - 1)?7(”)77(” - 1)7 s 77(1)'

The generated data are then taken as the first n elements of the inverse DFT of the vector
generated as diag(v)z, where z is a complex-valued Gaussian vector, scaled by n'/2 — see Davies
and Harte (1987) or Beran (1994) for the complete details of the algorithm. Davies and Harte
simulate the so-called fractional Gaussian noise, which has a different autocorrelation structure
from (1.4) except in the tail, but the method is easily adapted as described. By use of the
fast Fourier transform, this method is substantially more economical of time and memory than

(3.6)



the Choleski method, and once again it yields type I fBM in the limit. We have checked the
properties of both of these algorithms by simulation of the (1.4) model with d = 0.4 (n = 1000,
and 10,000 replications). For comparison with the theoretical value (1.389, from above) the
standard deviation obtained for the Choleski replicates in these experiments was 1.394, and for
the circulant embedding method, 1.396.

It is striking that these successful methods of simulating type I work by reproducing the
characteristics of the observed data directly, not by invoking the linear representation as is done
explicitly in 3.1 and implicitly in 3.2. However, while they can be generalized to any stationary
process whose covariance sequence is known, such as the ARFIMA class, or fractional Gaussian
noise, and can in principle be generalized to the multivariate case, they will have difficulty
in accommodating non-Gaussianity, nonlinear short-run dependence and other important data
features. They are generally too inflexible for implementation in econometric models, which tend
to rely heavily on the ‘independent shock’ paradigm for their construction.

3.4 Wavelets

Simulation of fractional processes using wavelet methods has been quite extensively researched,
see among other references Abry and Sellan (1996), Meyer, Sellan and Taqqu (1999), and Pipiras
(2004, 2005). While many variants of the method are possible, the basic algorithm described by
Meyer, Sellan and Taqqu (1999) is representative. Defining the Hurst coefficient H = d+ %, they
show that fractional Brownan motion By (t), t € R can be represented almost surely on compact
intervals in the form

By(t)= Y ®u(t- k:)S,gH) +> 0> 277wy (2t — k)eji — b,

k=—o0 j=0 k=—00

where ¢j;, ~ 1id N(0, 1), bg is the initial condition to ensure By (0) = 0, ¥y is the chosen wavelet
function, and ® is a described as a biorthogonal scaling function satisfying ® 5 (t) = O(|t|~272H).
The key component is S,gH), a discrete time fractionally integrated Gaussian process such as an
ARFIMA(0, H— %, 0), independent of {1}, and designed to capture the low frequency variations.
The wavelets fill in the high frequency “details”, at successively smaller scales as j increases. See
the above-cited references for the details.

On a compact interval such as ¢ € [0,1], replacing the infinite sums in j and k by finite

sums is shown to provide a highly accurate approximation to fBM. The sequence SliH) can of
course be generated by the Choleski or circulant embedding algorithms. Exploiting the self-
similarity of the fractional process allows relatively short realizations to effectively mimic the
‘large’ deviations in fBM. Therefore, we can view the wavelet method as exploiting the benefits
of the Choleski and related methods. In particular, it should reproduce the type I distribution at
reduced computational cost. (We have not been able to check this assertion ourselves by direct
calculation, but the belief that the method should inherit the properties of the approximating
ARFIMA appears a reasonable one.) However, it suffers the same disadvantages as those methods
in having no straightforward extension to the multivariate framework, and also being difficult to
adapt to the context of econometric modelling in the time domain.

3.5 Simulation by Aggregation

Beran (1994) also suggests using the Granger (1980) aggregation scheme. Summing a large num-
ber of independently generated stable AR(1) processes, whose coefficients are randomly generated
in the interval [0, 1) as v/, where « is a drawing from the Beta(a, b) distribution, Granger showed
that the resulting aggregate series x; would possess the attributes of a fractional sequence with



d = 1—1b; for example, with d < % the autocovariances F(z;xz;—) will decrease at the rate 2d-1,
The ‘long memory’ attribute can be identified with the incidence, in a suitable proportion of the
aggregate, of AR roots close to 1. A related method is proposed by Enriquez (2004), in which
discrete processes are drawn repeatedly from a distribution inducing the required persistence
structure, and aggregated.

These procedures certainly generate processes with the correct autocorrelation structure in
the limit, but this alone is not sufficient to ensure that the normalized partial sums converge to
fBM. For a further discussion of related issues see Davidson and Sibbertsen (2005). These authors
prove convergence to type I fBM under a different aggregation procedure, that of micro-processes
undergoing random regime shifts following a power law. However, in this result the aggregated
micro-series are stationary processes, with implicitly remote starting dates. Although this issue is
not dealt with explicitly in the cited paper, it is a plausible conjecture that aggregating truncated
processes, with presample shocks suppressed, would yield the type II case.

A formal proof of weak convergence to fBM still appears wanting for the Granger aggregation
case. Enriquez (2004) provides a proof that his limit process is Gaussian and a.s. continuous,
and that its increments possesses the requisite correlation structure. However, the issue of type
I versus type II is not addressed, and neither of the formulae (1.1) and (1.2) are cited as limit
processes. We can plausibly conjecture that, in either case, the limit is of type I or type II de-
pending on the treatment of the presample shocks. In the Granger aggregation case, note that
for a type I limit the AR series components need to be stationary, an attribute only attained
asymptotically as they advance from their starting points. This approach to stationarity will be
rapid in most cases, but the long memory attribute of the aggregate depends upon the incidence
of components with roots close to 1. These may have low probability, but they are correspond-
ingly influential in the aggregate, and require a large number of steps to attain their stationary
distributions. In other words, the problem that arose in Sections 3.1 and 3.2 recurs here. One
might also consider simply drawing zg from the relevant marginal distributions, as an alternative
to long lead-ins, but here there is the difficulty that the variances are tending to diverge in those
influential cases with a close to 1; a phenomenon not unrelated to the singularity at the origin
in (3.5).

4 An Alternative Simulation Strategy

The last section considered a number of methods of generating discrete time series with frac-
tional characteristics. It is noteworthy that while some yield approximations closer to the type
I distribution, and others closer to the type II distribution, this distinction is not significantly
discussed in the literature we have cited, despite its obvious importance in applications. For
econometric modelling, the need to simulate complex and often multivariate processes with pos-
sibly nonlinear features strongly favours the the pre-sample lag method, for its evident flexibility
and adaptability. The question we consider is whether these benefits can be reconciled with the
need to simulate the type I model. The method we describe in this section is designed to meet
these requirements, and is also computationally very economical.

4.1 The Univariate Case

Consider the MA(oco) representation (i.e. Wold representation) of the linear time series process
x; with weight sequence {b;}, given for example by (1.6) in the case of (1.4). For t =1,...,n,
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write x; = xy + x;* where

t—1 [e'S)
.’L‘: = Z bjut,j, LU:* = ijut,j. (41)
j=1 j=t

In the representation (1.1), X* and X** are the weak limits of the partial sum processes X and
X derived from z} and zf* respectively. As such, each is Gaussian, and they are independent
of each other. The problem noted is that to approximate X* adequately by a finite sum may
require taking the x}* to an infeasibly large number of terms.

Assume at this point that the u; process is i.i.d. Gaussian. Then, z; and z}* are independent
of one another, and the vector ** = (z3*,...,25*) is Gaussian with a known covariance matrix.
A convenient fact is that the autocovariance formula has the alternative representation

E(xoz_k) = 0% bibjis. (4.2)
j=0

Therefore, for any ¢,s > 0,

oo (o]
E(xf*x:*) =F Z bj+tu_j Z karsu,k
7=0 k=0

=0’ Z bjyibjys
=0
min(t,s)—1
= BE(zoz_ji—s)) =07 Y bibjiq- (4.3)
=0

Assuming that the sequence {b;} is easily constructed, the n x n covariance matrix

can therefore be constructed with minimal computational effort.

This suggests an easy way to simulate the distribution of **, by simply making an appro-
priate collection of Gaussian drawings. Let &** by constructed, by any means whatever, to be
independent of &* and Gaussian with the correct covariance structure. If

[nr]

1
ok _ Hok
Xo'(r) = nl/2+d th
t=1
denotes the corresponding partial sum process, the following result is easily established

Theorem 4.1 X'* < x,

Thus, let the vector * = (x7,...,2})" be computed by the usual moving truncation method so
that, by standard arguments, X L X*. Tt then follows by the continuous mapping theorem that
X=X+ X3 4, X, in other words, Type I fBM.

If u, is either not Gaussian, or is weakly dependent but not i.i.d., this simulation strategy will
be inexact in small samples. However, it will still be asymptotically valid under the usual condi-
tions for the invariance principle, noting that the limiting Gaussianity is here induced directly in
the simulation, not by a limit argument. Note, incidentally, that it would be perfectly possible

11



to simulate the vector * in the same manner, instead of using (1.4) and (1.8) in conjunction
with the random generation of uq, ..., u,. This approach would lead us, in a roundabout fashion,
to the Choleski simulation method. The asymptotic distributions would be the same, but there
are of course numerous advantages in terms of modelling flexibility with the dynamic simulation
approach and little is lost, in this case, in terms of computing resources.

It turns out that C,, tends rapidly to singularity as n increases, which is not surprising in view
of the fact that ** basically combines the common set of random components {u;, t < 1} with
changing weights. This means that in practice only a comparative handful of Gaussian drawings
are needed to generate the complete sequence. If n is small enough that C,, can be diagonalized
numerically (in practice, this appears to set n < 150 approximately, using the requisite Ox
function) then it is a simple matter to obtain the decomposition

C,=V,V, (4.4)

where V, is a n X s matrix, and s is chosen as the rank of the smallest positive eigenvalue. Then,
it is only necessary to draw an independent standard Gaussian vector z (s x 1), and compute
z** = V,z. Note that in a Monte Carlo experiment, V,, only has to be computed once, and
can then be stored for use in each replication. This means that generating a type I series has
virtually the same computational cost as that of a type II series.

So much is straightforward, but we also need to deal with the case where n is too large to
perform the required diagonalization. In practice, we treat n = 150 as a convenient cut-off point.
To construct a suitable V,, matrix for cases with n > 150, we note the fact that the squared
length of its tth row is E(z}*?), which we can obtain from (4.3) as before. We also have the
fact that the columns of V, are orthogonal and accordingly have a characteristic structure. We
combine these pieces of information by constructing and diagonalizing C,,, where p is chosen as
the largest whole divisor of n not exceeding 150. V,, matrices are now constructed as follows:
for t = 1,[n/p|,2[n/pl,...,p[n/p], set the tth row of V,, by taking the [pt/n]th row of V,,
renormalized to have squared norm equal to E(z}*?). Then, the missing rows are then filled in
by linear interpolation, followed by renormalization such that v/, v,; = F(x}*?). This procedure
is fast and ensures that, at least, the variances and covariances are diminishing as ¢ increases at
the correct rate.

To illustrate the performance of the interpolation procedure, Figure 3 plots, for the case
d = 0.4 and n = 150, the first 4 columns of V,, by exact calculation (solid lines) and also by
interpolation from p = 50 (dashed lines). The differences are apparently negligible. This is
the largest n for which this direct comparison is possible, but our simulation results suggest the
method also works well in cases up to n = 1000. Table 3 shows the theoretical standard deviations
of the random variables X (1) and X*(1), with the same quantities estimated by Monte Carlo
from samples of size n = 1000 for comparison. The table indicates that the proposed simulation
strategy replicates the distribution very accurately, in general. Only for the extreme negative
values of d; does the approximation prove poor, the approach to the asymptote as n — oo
appearing to be very slow in this region. However, note that this phenomenon effects the type I
and type II models equally.

Now consider the application of this method to general fractional processes. In the case of
the ARFIMA(0,d,0), as was used in the construction of Table 3, the autocovariance formula is
taken from (3.6). The sequence {b;} is easily constructed by the recursion b; = b;_1(j+d—1)/j
for j > 0 with by = 1. It would be possible to extend the method directly to the ARFIMA(p, d, q)

H(L)A%; = 0(L)ug, g ~ iid(0, 0?) (4.5)

by taking the required covariance formulae from Sowell (1992). In practice, however, there is
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Figure 3: Columns of V,, n = 150: Actual (solid line); interpolated from p = 50 (dashed line).

Type I Type 11
d Theoretical Monte Carlo Theoretical Monte Carlo
0.4 1.389 1.383 0.840 0.842
0.2 0.997 0.993 0.920 0.917
0 1 1.0085 1 1.0085
-0.2 1.176 1.167 1.109 1.104
—0.4 1.877 1.76 1.501 1.41

Table 3: Standard Deviations of Type I and II Processes. Monte Carlo estimates for n=1000,
from 10,000 replications

little need for this elaboration. To see why, note that defining z; = ¢(L)x; we may write

=2z +2
= A9(L)ugd (t > 1) + A~ (L)us1(t < 0).
The first term can be simulated in the usual manner as a partial sum from zero initial values,
whereas the second term is well approximated, by 72 bitjv—; where v ~ iid(0, 0(1)%02), and

{b;} is obtained by the recursion just described. The autoregressive component is now easily
added, given initial values z1_p,..., 20, by the recursion

p
Tt = 2t — E ijmtf]
J=1

13



4.2 The Multivariate Case

To generalize this method to generate vectors of two or more type I processes, say €; = (z1¢, - - -, Tint)
for any m > 1, we need to write the model in final (Wold) form as

o
Ty = g Bju;j,
=0

where the B; (m x m) are matrices of lag coefficients, and {u;} (m x 1) is the vector of shocks
with covariance matrix 3. The autocovariance matrices accordingly take the form

T'(k) = E(zox)_;) ZB XB,
It easily follows by the preceding arguments that

E(x}*z*) = ZBJ+tZ}B
7=0

T'(s—t) ZB XB),, ,

for t < s, and take the transpose of this matrix for the case t > s.
Accordingly, stack the components xi*, ...,z into a vector ** = (z7*,...,z) (mn x 1)
having covariance matrix

Clln Clmn

le,n o Cmm,n

Letting b;w' represent the kth row of Bj, note that the cross-covariance matrices Cyyp,, for
k,h=1,...,m have elements of the form

o
Kok k) / )
E(zpiays) = Z by j+¢23bh,j1s
=0

= Vkn(s — 1) Z b, j 2 bnjrs—t-

for the cases s > ¢, and with E(zj;a}%) = E(xjsxy;) for the cases t > s, such that Cyppn = Chy -

The decomposition (4.4) can now be computed as before, for this stacked matrix, to yield
Vo= (Vi,,..., Vi.,,)). Theblocks V, (nxs) for j =1,...,m are used to generate replications
of each process, from the formula 27" = Vj, z where, in this case, as before, z is a standard normal
drawing of conformable dimension. Given that we are limited by mn < 150, this method has
to be modified by the extrapolation step described above, for cases with n > [150/m]. Hence,
large-dimensional systems potentially entail an additional compromise in terms of approximation
error, relative to the univariate case. However, for the reasons stated above we would not expect
this to be a critical issue for most purposes; thus, the case m = 3 and n = 150 will yield an
approximation comparable to that illustrated in Figure 3.

For the case where B; = diag(bij,...,bm;) and by; = I'(j +di)/(I'(di)I'(j + 1)), the following
generalization of (3.6) provides the cross-autocovariances. Without loss of generality, consider
the bivariate case, as follows.

14



Theorem 4.2 For xy; and xo defined by (1.4) with respect to i.i.d. shock processes uiy and ug
with covariance E(uiup) = 012,
sintdy T'(1 —dy — do) T (dy + k)

I (1 —dy + k‘)

E(x1012,—1) = 012

Note that this formula yields (3.6) in the case x1; = x9. Extending the procedure to the
simulation of vector ARFIMA systems is a simple matter of replacing 3 by @(1)X0(1)’ to cope
with a vector moving average contribution (L) (m x m), and then applying the autoregressive
recursion to the augmented series in the manner described in the previous section.

5 Estimation of Type I ARFIMA Models

Compare the stationary fractional noise model
(1-L0)Y;=u, t=1,...,n (5.1)

where {u;}*% is 1.i.d.(0,0?%) and |d| < 1 with its feasible counterpart

1-L)YYF=ul,t=1,...,n (5.2)
where uy is defined by (1.8) and Y;* is defined by the equation. In other words, if the sequence
{a;} repesents the coefficients in the expansion of (1 — L)%,

I = w
YQ* = us — alYl*

In the standard time domain estimation framework, we will normally maximize the likelihood
implied by (5.2), although using the data Y1,...,Y,, generated by (5.1) by hypothesis.
Write

t—1
Yo(Lid) = a;L0
j=0

to represent the truncation of the expansion of (1 — L) 4 at the tth term. This operator is
sometimes written (1 — L)_T_d, but we choose in this context to emphasize the dependence on t.
Note that

Yi(L;—d) = Ti(L; d) ™!

follows immediately from matching terms in the identity (1—L)%¢(1—L)~% = 1. With this notation,
we can write the solution of (5.2) as

Y= (1— L) %) = Y(L; —d)uy.
However, notice that the solution of (5.1) has the approximate form

Y = (1 — L) %y
~ T (L; —d)us + vi(d,0) 2

15



where v;(d, 0)" is row t of the n x s matrix defined by (4.4), and z (s x 1) is a standard normal
vector. Therefore consider the approximate form of (5.1) taking the form

Yi(L;d)Y; = Ty(Lyd)vi(d, o) z + wy
=v(d,0) z + u (5.3)

where the second equality defines v;. The vectors v}(d, o) can be computed, given values for d
and o, and the elements of z can be treated as s additional unknown parameters. Therefore, the
true model (5.1) can be estimated, in principle, by inserting the ‘regressors’ v; into the equation
and estimating the parameters (d, o, z) jointly, by conditional maximum likelihood.
The same technique is straightforwardly extended to estimating the ARFIMA(p, d, ¢) model,
with the form
o(L)(1 — L)UY; — @) = 0(L)ug, t = 1+ max(p,q),...,n

where oo = E(Y;). The approximate model in this case takes the form
H(L)Y(L; d)(Y; — ) = v (d,o|0(1)|) z + O(L)ug, t = 1 + max(p, q),...,n. (5.4)

Notice that in this case the variance of the presample shocks must be calculated as 026(1)2, and
hence the v} depend additionally on the moving average parameters. Be careful to distinguish
between this model and that having the form

ALY (L; d)Y; = p+ vi(d,a]0(1)]) z + O(L)uy.
This latter model has a solution of the form

_ . *

where Y;* is a zero-mean ARFIMA and Y4(1; —d) = O(t%), and hence contains a deterministic
fractional trend.

Note that this modification of the conditional ML estimator is of small order and irrelevant
to the asymptotic distribution. Since vy — 0 as t — oo, the estimator of z is not consistent.
However, under the distribution conditional on the presample realization of the process, the
omission of the terms in z is a potential source of finite-sample estimation bias. Including these
terms implies a bias-efficiency trade-off depending on sample size, and whether it is desirable
on balance is a question needing to be considered in context. The method is best understood
by contrasting the exact maximum likelihood estimator (MLE) with the conditional MLE. The
former estimator was derived by Sowell (1992) for the Gaussian case, while the latter is equivalent
to least squares with presample values set to 0. The question we pose is whether introducing the
extra parameters allows a finite sample correction comparable to that provided by doing exact
rather than conditional ML.

With these issues in mind, we considered the well-known series for annual minima of the
Nile, as studied by Hurst (1951) and reproduced in Beran (1994). This series of 663 annual
observations (622-1284AD) appears as a stationary process, having a sample mean of 1148.16.
The time plot is reproduced (in mean deviation form) in Figure 4.

The natural linear representation of such a process is (5.4) where « represents the uncon-
ditional mean. The fact that the true « is unknown is a complicating factor for our analysis,
which to date has implicity considered zero mean processes. Ideally we should like to fit « econo-
metrically, in the context of the type I model. However, preliminary attempts revealed a very
substantial loss of efficiency. The difficulty of fitting the mean of fractional models is a well known
problem, documented for example by Cheung and Diebold (1994). There proves to be too little
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Figure 4: Annual Nile minima (mean deviations)

information in this sample to allow « and z to be estimated jointly, so for the purposes of the
exercise we subtract off the sample mean at the outset. For the centred series, « is fixed at 0.

A second important question is the choice of s, the number of elements of z to be fitted. The
elements of vy depend on the magnitude of d but, beyond the first element, get very rapidly small
from the outset, even when d is large (see Figure 3). A practical limit for s of at most one or two
emerges from this and other cases examined.

In Table 4, we report estimates for the cases s = 0,1 and 2, the first of these corresponding
to the usual type II model. In view of the leptokurtic shock distribution evident from Figure
4, we also opted to maximize the Student ¢ likelihood, which allows the degrees of freedom of
the distribution to be estimated as an additional parameter. The columns headed MLE show
for comparison the Sowell (1992) exact Gaussian maximium likelihood estimator. This is the Ox
implementation ARFIMA 1.04, due to Doornik and Ooms (2006). The fact that the available
implementations do not allow for non-Gaussian disturbances is one advantage of our approximate
method over exact ML. ARFIMA (0,d,0) models are fitted, and the residual Box-Pierce @) statistics
indicate that these models account adequately for the autocorrelation in the series.

The first four columns of the table show the estimates for the complete sample of 633 years.
It is apparent from the time plot that the initial observations are quite close to the mean of the
series. Presample components happen to cancel out here, and have a small net influence on the
initial observations. In other words, the ‘type II’ assumption that the pre-sample shocks are zero
is not too implausible at this date. However, moving forward in time to the late 700s places us in
the middle of a prolonged dry period. Observe that the Nile’s flow was substantially lower than
average, in every year except one, between 758 AD and 806AD. Of course, it is climatic variations
of this type that give rise to the ‘long memory’ characterization of the series. If our sample had
happened to start in (say) the year 784AD, instead of 622AD, the pre-sample shocks would have
been relatively influential, and the ‘type II’ assumption correspondingly inadequate to account
for them.

Columns 4-6 of the table show the results of estimating the model from the observations
from 784AD onwards (marked with the dotted line in Figure 7). Note the substantial difference
between the ‘type I’ and ‘type I’ estimates in this case. If we take as a benchmark the estimate
of the memory parameter d for the whole period (0.418), note that in the shorter sample the
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622-1284AD 784-1284AD
s=0 s=1 s =2 MLE s=0 s=1 s =2 MLE

ARFIMA d 0.4182 0.4187 0.4185 0.3932 0.4504 0.4398 0.4289  0.4374
(0.0316)  (0.0315)  (0.0310)  (0.0299) (0.0383)  (0.0377) (0.0315)  (0.0336)
type I Frac.,Z; — —0.465 —0.908 — — —0.9841 —0.5301 —
(0.516)  (0.679) (0.672) (0.554)
type I Frac., Zs — — 1.894 — - — —3.485 —
(1.771) (1.842)
Shock SD 70.547 70.665 70.865 69.90 66.981 66.958 66.542  65.37
(2.946)  (3.004) (3.075) (3.757) (3.891) (3.825)
Student ¢ DF 2.345 2314 2.273 — 2.1248  2.088 2.1248 —
(0.245)  (0.239) (0.234) (0.214) (0.206) (0.214)
Log-likelihood —-3738 3737 =3737r 3757 —2786 —2783 —2782  —2806
Residual Q(12) 7.6426 7.524 7.027 — 5.250 5.686 5.897 —

Table 4: Annual Nile minima: ARFIMA(0,d,0) estimated by Student ¢ conditional ML (robust
standard errors in parentheses) and Sowell (1992) exact ML.

conventional type II model (s = 0) appears to overstate d significantly. Also, fitting the type I
components applies a much more substantial correction than before. The estimate 0.429, while
still a little larger than the full-sample benchmark, is a great deal closer to it than the estimate
0.450 obtained from the ‘type II’ model.

The estimates of the z components are evidently inefficient, especially when two are fitted.
Thus, since we know that these coefficients are standard normal drawings, the estimate of —3.48
is clearly excessive, a result that can be understood as due to a trading-off of two highly collinear
components. However, it is also clear that neglecting the presample shocks can in certain cir-
cumstances induce bias with respect to the conditional distribution. The ability to correct for
these effects may in some circumstances provide a useful addition to the modeller’s armoury.

6 Conclusion

In this paper, we have considered the issue of modelling fractionally integrated processes for
econometric applications. Since inference in these models will generally depend on teaming an
invariance principle with a scheme for numerical simulation of the assumed asymptotic distrib-
ution, it is of some importance to make an appropriate choice of data generation process. We
show that simulating the more natural type I representation of fractional Brownian motion can
be achieved with as little computational cost as the type II model often used in practice, although
conventional simulation methods work poorly. Our firm recommendation to practitioners is to
use type I simulations wherever this difference is likely to be crucial, unless there are particular
reasons for doing otherwise.

We note the existence of important exceptions to this rule, such as the unit root test against
fractional alternatives proposed by Dolado, Gonzalo and Mayoral (2002). Here, the statistic is
computed using the fractional difference of the observed series, where since this is naturally trun-
cated to the observation period, the induced asymptotic distribution is of type II by construction.
Hence the tables reported by these authors for this case of the null hypothesis are correct. How-
ever, they also propose, although do not analyse in any detail, a test for the null hypothesis of a
fractional process with parameter dy against an alternative d;. For these cases, the tables would
need to be generated according to the assumed type of the observed data, and the test outcomes
could depend on this decision in a crucial manner. We would recommend the methods proposed
here in such a case.
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A Appendix: Proofs

Proof of Proposition 2.1 We derive this expectation as the limit of the expression

n—1 ¢

n1+d1+d2 Z Z Br1sa3,141

t=1 s=1

s i1 . .. . . e,
where x;, = ijo bpjupi—j for p=1,2, and uy; and uy are i.i.d. with E(ujugs) = o2 if t = s,

and 0 otherwise. Note that . -
— s
Yot =) (Z blk) Ui t—s
s=1 k=0

and hence
t t—1 S
* *
E Z T1sT2t4+1 = 012 Z Z bik, | b2,s5+1-
s=1 s=0 \k=0

Applying Stirling’s approximation formula, note that
d1
s
b di1— 1 ’
E 1k ~ / §HdE = N +1)

where ‘~’ denotes that the ratio of the two sides converges to 1 (see Davidson and de Jong 2000,
Lemma 3.1). Hence, by a similar argument

n—1 t o n—1t—1 s
12
n1+d1+d2 Z ZExlst 1T T ditds § : E : E :blk b2,5+1

t=1 s=1 t=1 s=0

o12ds dytds—1
dcd
T(d + )T d2+1//4 Cdr

and the stated result follows directly. I

Proof of Theorem 4.1

Note that X*(r), 0 < r < 1 is Gaussian with covariance structure converging to that of the limit
process X**, by construction. It therefore remains to show that the sequence is uniformly tight,
which we demonstrate by establishing the criterion of Theorem 15.6 of Billingsley (1968). In the
present case, this is easily shown to be implied by

E(X;(r+6) = X3*(r))® < 062

for a > % and all 0 <r <1—4, and C' < oo represents a generic positive constant. However,

[n(r+9)]
k% kk 1
X (r+0) = X3"(r) = 1/2+d Z Ty
=[nr]+1

It follows from (4.3) that for k£ > 0,
Bz zyty) = O,

In addition, EX}*(r)? = O(r??*1) is shown in Davidson and De Jong (2000), see the proof of
Lemma 3.1(b) The inequalities

< C&Pr2-1 p >0

B0 - X0 S G 17
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follow directly, and are sufficient to prove the theorem. ]

Proof of Theorem 4.2
To compute the cross-covariance use the harmonizable representation:

4 - 7d1 . . 7d2 .
Y12 (k) = E (11720 —1) = 012/ (1 — e_Z)‘) it (1 _ e“) o1 E=F)A g\

2 J_,

_oz [ (1 —e_i)‘>_d1 (1 —ei)‘>_d2 e*Ad), (A-1)

oo ).

Denoting the integrand in (A-1) by F' () observe that
/ F(\)d\= / [F )+ F (A)] A (A-2)
- 0
where the upper bar denotes complex conjugate. Further, using

1 — T = 4eFiN/2 (ei”\/Q — e_v‘/2> = +2je T2 sin%

_ 9ptilr-N/2 g A

and noting that sin(A/2) is non-negative for 0 < A < 7, rewrite the integral in (A-2) as

—d; —ds
+ <2ei(“>‘)/2 sin ;) <26i(’r)‘)/2 sin ;) e““)‘] d\

_ 2—d1—d2 /'7r Sin_dl—d2 é |:ei[—(d1—d2)7r/2+(d1—d2+2k))\/2} + e—i[—(dl—dg)ﬂ'/2+(d1—d2+2k‘)>\/2]i| d\
2
0
= gl—di=d2 / sin~ 4~ gcos [— (d1 —d2) /2 + (d1 — da + 2k) \/2] dA. (A-3)
0
The integral in (A-3) can be transformed, using the change of variable z = (7w — \) /2, into
4 A
/ sin~9—dz 5 cos[= (d1 — do) /2 + (dy — da + 2k) /2] d)
0
w/2
= 2/ cos 7%y cos [~ (dy — dg) w/2 + (dy — do + 2k) (7/2 — z)] dx
0
/2
= 2/ cos ~1=%2g cos [k — (dy — dy + 2k) 2] dx
0
/2
= (—1)’“2/ cos ~M g cos (dy — dy + 2k) x dx.
0

Using Relation 3.631.9 of Gradshteyn and Ryzhik (2000) and the properties of beta and gamma
functions,

9—(1—d1—d2) .
(1—d1—dg)B(l—dg—i—k,l—dl—k)

w/2
/ cos ~N%2 g cos (dy — dy + 2k) zdx =
0
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27 (=dimda)g ['(2—di —da)
 l—di—dy T(1—do+k)T(1—dy—k)
I'(1—di—dg) T'(di+k)
T 2ldid T (1—dy+ k)

_(—1)* I'(1—dy —dpy) T (di+k)
21—di—d> T (1 —dy + k‘)

sinm (dy + k)

sin 7dy.

Finally,
sinwd; I’ (1 —dy — dg)r (dl + k‘)

I'(1—dy+k)

Y12 (k) =012

B Appendix: Distributions of Fractional Brownian Functionals

The following simulations of familiar statistics associated with nonstationary regression analysis
are each based on 100,000 Monte Carlo replications. Although these statistics have an established
role in hypothesis testing, we are abstracting here from any specific testing problem. The object
is solely to investigate how far these representative fractional Brownian functionals differ, under
the alternative definitions.

In the following formulae, the expression on the left of the “~” symbol is evaluated from
data in each case and the expression on the right is the random variable whose distribution we
seek to estimate. The model in (1.4) with independent Gaussian(0,1) shocks is used to generate
the data with a sample size n = 1000 in each case. For the "type I" model, x; = =} + x}* where
x} is generated as in (4.1), and z}* is constructed as detailed in Section 4. These kernel densities
are plotted with solid lines in the figures. The corresponding expressions for the "type II" case
are obtained by simply setting x; = x; and X = X* throughout. These densities are plotted
with broken lines in the figures.

1. Dickey-Fuller statistics.

0 = it St Jo XdX
St s? ) X2ds

and . ~
) 1 (S =8z fo XdX - X(1) [} Xds

no,=n —
g LS 8)" T s — (s de)

These are the normalized coefficients of the regression of z;11 on Sy = 22:1 Ts, with and
without intercept. Note that these statistics are O,(1) for d > 0. The corresponding
Dickey-Fuller ¢ statistics diverge at the rate O,(n?) in the same case (see Davidson 2006).
Table 5 shows some leading quantiles, and Figure 5 plots the kernel densities.

2. Bivariate Stochastic Integrals

Sy Sz
2at=1P1tL2t
Cpltditds deX%

and

> (S — S1)wa
nl+d1+d2 / deX2 —X2 / des
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P(<) 0.01 0.05 0.1 0.9 095 0.99

no intercept Typel —0.12 0.04 0.28 239 288 4.17
Type I —-0.24 —-0.04 0.16 2.71 3.30 4.68

with intercept Typel —4.51 —-2.75 —=2.05 1.97 2.67 4.25
Type I —4.02 —-245 —-1.78 247 3.15 4.94

Table 5: Quantiles of the Dickey-Fuller statistics, d = 0.4.

0.06 | 0.06 [
0.05| 0.05 |
0.04 1 0.04
0.03 | 0.03 +
0.02 0.02
0.01 0.01 1
0 3 7 8 s 10 15

Unit root autoregression, no intercept . . s
Unit root autoregression with intercept

Figure 5: Simulation of unit root autoregression: d = 0.4, 1000 observations, 100,000 replications

3.

where S1; = Zizl x1s and the pair {14, x9;} are fractional noise processes where {uy, uo;}
are Gaussian(0,1) and contemporaneously correlated with correlation coefficient 0.5. Figure
6 shows kernel densities for the cases where either X5 is fBM with d = 0.4 and X; is a
regular Brownian motion (and hence the difference in the distributions depends wholly X5)
or both processes are fBM with the same d of 0.4.

Fractional cointegrating regression ‘t statistics’

n1/2_d2 Z?:l Slt.fCQt — fol deXg

n n n 2 - 1
\/Zt:l ST >t w3 — (i Sewar) 92/ Jo Xids

and
pl/2=d2 50 (8 — §))ag _fy X1dXa — X5(1) f) X1ds
n a n n a 2 2
\/Zt:1(51t = S1)2 300 a3, — (Zt:1(51t - Sl)@t) 02\/f01 X2 — (fol Xl)

where Sy = S\ #15, 03 = plimn = 327 | x3,. In these expressions the stochastic integrals
from 2. appear in the numerator. These statistics are normalized to be O, (1) using the facts

that Y7 | Sipwar = Op(nttditdzy and Yo | S2 = O(n?+241). Quantiles of the distributions
are given in Table 6 and the kernel densities are plotted in Figure 7.
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Figure 6: Simulations of a bivariate distribution with correlation 0.5. Integrand has parameter
d1, integrator has parameter d2. 1000 observations, 100,000 replications.

P(<) 0.01 0.05 0.1 0.9 0.95 0.99

no intercept d=0 Typel -—-1.711 -1.135 -0.879 0.977 1.297 1.810
Type I —-0.672 —-0.322 —-0.172 1.125 1.375 1.774

di =04 Typel -1913 -1.353 —-1.033 1.206 1.526 2.086

Type I —-0.986 —0.643 —0.446 0.977 1.173 1.566

with intercept d; =0  Typel —0.868 —0.570 —-0.437 0.523 0.689 0.954
TypeIl —-0.381 -0.175 —0.056 0.770 0.888 1.124

di =04 Typel —0.885 —0.623 —0.460 0.487 0.650 0.912

Type Il —0.778 —0.550 —0.387 0.525 0.655 0.916

Table 6: Quantiles of the cointegrating regression "t statistics"
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Figure 7: Simulations of regression t-ratios. 1000 observations, 100,000 replications.
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