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Abstract

This paper compares models of fractional processes and associated weak convergence re-
sults based on moving average representations in the time domain with spectral representa-
tions. Both approaches have been applied in the literature on fractional processes. We point
out that the conventional forms of these models are not equivalent, as is commonly assumed,
even under a Gaussianity assumption. We show that it is necessary to distinguish between
‘two-sided’ processes depending on both leads and lags from one-sided or ‘causal’ processes,
since in the case of fractional processes these models yield different limiting properties. We
derive new representations of fractional Brownian motion, and show how different results are
obtained for, in particular, the distribution of stochastic integrals in the multivariate con-
text. Our results have implications for valid statistical inference in fractional integration and
cointegration models.
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1 Introduction

Two approaches to studying the asymptotics of long memory, fractional integration and cointe-
gration models have been developed in recent literature. In the first of these, which we call the
‘time domain moving average’ model, the fractionally integrated process is commonly written as

zy = (1— L) %y (1.1)

where L represents the lag operator, |d| < %, and wu is a short memory (weakly dependent)
process. As is well known, the binomial expansion of (1 — L)~ yields the infinite moving average

representation
o0
Ty = E bjut_j
Jj=0

where

 D(d+))
T T(@r(+1)
and T'() denotes the gamma function. Under the indicated restriction on d the lag coefficients are

square summable, and the process is accordingly covariance stationary. In many applications we
consider the linear case where

Ut = Q(L)Et
with {e;} 1.i.d.(0,0%) and (L) = > ;°,6,L7, having absolutely summable coefficients. See, for
example, Granger and Joyeux (1980), Hosking (1981), Beran (1994) and many related references.

In the second approach, the frequency domain harmonizable representation of the process is
adopted. Define

Ty = /Tf A h(eYW (dN) (1.2)

where 4 is the imaginary unit and W is a complex-valued Gaussian random measure with the
properties

W (—dX) = W (dN) (1.3a)

E(W(d)) =0 (1.3b)
- 2 _

E(W (AW (dp) = { Odf’ h=a (1.3¢)

Observe that z; is always real-valued since the integrals over [—m,0] and [0,7] are complex
conjugates. h(e™) is called the transfer function or frequency response function of the process.
If o is i.i.d. then h(e*) = 1/v/27 (constant), but otherwise we wish to think of it at this stage
merely as some function of A, complex-valued in general, to be specified by the context. It is
however related to the spectral density of the process by f(\) = o2 |h(e“‘)‘2, and in the long
memory case the latter function is often represented in the generic form

FO) = AIT*IL(N)

where d matches the parameter in (1.1), and L()) is at most slowly varying at 0.! See Robinson
(1994b), Brockwell and Davis (1991) Section 13.2, among other references, for further details of
this type of model. Note that the harmonizable representation is more specialized than the time

'"Here, L() is the standard generic notation for a slowly varying function, not to be confused with the lag
operator L.



domain model since it requires the process to be Gaussian and stationary, whereas u; in (1.1) can
belong to a more general class of processes. However, these models are often treated, explicitly
or implicitly, as being merely alternative representations of the same process. A key feature of
the theory is that the associated normalized partial-sum processes should converge weakly to a
Gaussian a.s.-continuous limit process known as fractional Brownian motion (fBM).

The object of this paper is to show that there are, in fact, important differences between these
models as commonly represented, and that, in particular, alternative versions of the fractional
model lead to different limit processes. The differences are not trivial, and may have completely
different implications for joint distributions in the multivariate case. Section 2 describes a class
of harmonizable representations of fractional Brownian motion, all sharing a common spectrum
apart from scale constants, and shows how they can be derived as the weak limits of forward
and/or backward-looking linear moving average processes. Section 3 considers the multivariate
case, and examines the cross-spectra and covariance functions of different members of the class.
Section 4 considers the distribution of the stochastic integral of one process with respect to
the increments of another, and generalizations of Chan and Terrin’s (1995) weak convergence
results are proved. Section 5 presents a complementary analysis of time domain representations,
generalizing the model first proposed by Mandelbrot and van Ness (1968), and gives a generalized
weak convergence result for this class using the approach of Davidson and de Jong (2000). Finally,
Section 6 discusses our results in the context of the existing literature, and shows how they resolve
a number of puzzles and contradictory features of this literature. Proofs are gathered in the
Appendix.

2 Harmonizable Representations of Fractional Brownian Motion

In this section we introduce a class of continuous time Gaussian processes,

1 00 ei)\r —1._
X(ridima) = o= [~ St d )W (N 2.1)

where W is a complex-valued Gaussian process on R satisfying the conditions of (1.3), and g is
a complex valued transfer function having the general form

GO d, kya) =k (I (—iN) T+ (1= k) ((A) % (—iN)* 7 (2.2)

for real constants d, k, a, where —% <d< %, 0<a<d/2ford>0and d/2<a<0ford<0,
and 0 < Kk < 1.

We mention two points of clarification at the outset. The first is to emphasize that this model
class is introduced as a vehicle for developing and illustrating the representation issues addressed
in the paper. We do not attempt to assign any particular interpretation to the parameters x and
a which, as we show, can be thought of as indexing different distributed lead/lag structures. We
will, in fact, argue that most practical applications in econometrics are covered by one particular
case (see (2.8) below). Second, note that in the sequel we use the generic notation X (r) to denote
any member of the class, so that dependence on the three parameters is taken as implicit. This
is chiefly for notational clarity, since the expressions involving several coordinates of X would
otherwise become unwieldy.

Now, note the identity

. s . S S . 7T S
(FiA)* = (Fisgn()* N = exp (Fisen(V)sg ) 1A
where sgn(A) = 1if A > 0 and —1 otherwise. Thus, (2.2) can also be written as
G dy ks a) = AT TN d k) (23)



where
Y(A\;d,k,a) = kexp (—im (d/2 — a)sgn(N\)) + (1 — k) exp (im (d/2 — a) sgn(N)) . (2.4)

Further note that
d
|T (N d, K,a)fz =1—-4k(1 — k) sin? 7 (2 — a>
= K(d,k, a)2 (2.5)

(defining K(d, k,a)) and so the generalized spectral densities of this class of processes take the
form

G\ d, k,0)]* = [N K (d, 5, a0)?,
Alternatively, the variance of a process increment of width 6 > 0, for any r € [0,1 — 4], is

E(X(r+96)— X(r))?

1 00 iA(r+d) _ iAr
- E/ T G(ndok,a)W(dN)

2 J_ A

0o e',u(r—&—&) _ etk ~
<[ S s W )

2 00
= g—K(d, K, a)22/ (1 — cos AS)|A| 72 2d\
T

_ o?K(d, k,a)* hqi
I'(2d 4 2) cos d

(2.6)

where the last equality can be verified from Gradshteyn and Ryzhik (2000) (henceforth GR)
Relation 3.823. Applying the identity

(X (ra) = X(r3))(X(r2) = X (r1)) = 3[(X(ra) = X(r1))* + (X (r3) — X (r2))
— (X(rs) = X(r1))* = (X(ra) = X(r2))’].  (27)

for any r1,7r9,73,74 € [0,1] with 1 < 79 and r3 < 74, formula (2.6) can be used to derive the
covariance of any pair of segments of the process. The covariance structure of these processes
therefore depends on a and k only through the scale factor K(d, k,a), and otherwise matches
that of what is usually called ‘fractional Brownian motion’. Since in general o2 is unknown, these
parameters are accordingly unidentified from the point of view of a single process.

Any of these processes are candidates to be referred to as fractional Brownian motion, and
some leading examples of the class have been proposed in the literature. Setting x =1 and a =0
yields

[eS) ei)\r _
X(r) = \/12? / 5 LN () (2.8)

(See e.g. Reed, Lee and Truong 1995). Setting a = d/2 on the other hand (in which case x drops
out) yields

00 ei)\r_
X(r):\/%r/_oo iA LA (dn) (2.9)

which, apart from an at most slowly varying component, is the model examined extensively by
Chan and Terrin (1995). As a further variant, set £ = 3 and a = 0 to yield

00 ei)\r_
X(r) = \/127(/_00 oY lRe(i)\)_dW(d)\). (2.10)
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The last case has not been proposed to date, to our knowledge, but provides an alternative to
(2.9) as a way of representing symmetry of the backward and forward-looking dependence. As
we show, this property is implicit in any model having a real-valued transfer function.

As noted, Chan and Terrin (1995), in common with other contributions to this literature,
allow slowly varying components in the transfer function and spectral density. Our class of
models might easily be elaborated to include, for example, a slowly varying, even function of A
as a factor in (2.3). Such extensions would complicate the analysis, but would not change the
basic conclusions. While these issues would be of interest to explore further, we choose to focus
the present discussion on the model as given.

One way to to motivate our class is by considering a corresponding class of discrete processes
in the time domain. We may then show how the Brownian motions derived above can be viewed
as weak limits as the time intervals shrink to zero. Let

up = MW (dN)

e

represent a serially independent Gaussian process with mean 0 and variance o2, and so consider
a ‘two-sided’ moving average process

xy = g(L;d, k,a)uy = Z bju—; (2.11)

]_700

where
g(Lid,k,a) = k(1 — L) 41— L™H™+ (1 —k)(1—L)"%(1—L 1)+ (2.12)

It is easily verified that the lag structure is a convolution of the binomial series associated with
fractional integration. Thus,

B 1 ZT(a+k)T(d—a+k)
bo = T(a)L(d - a) kzzo T(k+1)2 ’
b 1 i<nr(a+k)r(d—a+k:+j)+(1—n)r(d—a+k)r(a+k+j)
7 T(a)(d - a) P D(k+1)(k+j5+1) ’
B 1 =~ (kT(d—a+K)T(a+k+j5)+(1—rT(a+k)I(d—a+k+7)
b~ = Ta= o) (a) kzo ( Tk + DDk +j + 1) >

for j > 0. Note that

io: F(a + k)F>(d(_ a+k+ ]) ~ i kafl(j + k,)dfafl
k=0

Nk+1DI(k+7+1) —
s J AN L\ 4l o wo (i d—a—1
-2 (G) ) 2 G
k=0 k=j+1
~ Aji-1

for 0 < A < o0, and similarly

> F —CL+I€ (a+k3+]) = d—a—1y - -1 .d—1
~ Dy kT + k)T~ AT
kzo T(k+ OOk +j+1) kzo (7 +F) J




Hence, with d > 0 this process has long memory with parameter d ‘in the tails’ of the lag/lead
distributions. However, different choices of a and &, given d, influence the amount of short-run
memory relative to long run, either symmetrically forwards and backwards or asymmetrically.

The case a = 0, k = 1 yields g(L) = (1 — L)~%. This, of course, corresponds uniquely to the
one-sided (causal) model, with b; = 0 for j > 0 (lags but no leads). With a =0, x = 0, we have
g(L) = (1 — L7179 (leads but no lags). On the other hand, with a = d/2 the model does not
depend on k and g(L) = (2 — L — L™1)~%2, so that bj = b_; for each j > 0. The symmetry
property also holds for the case k = % Otherwise, with a lying strictly between zero and d/2,
the models exhibit different degrees of forward and backward memory.

On substituting the harmonizable representation of u; into (2.11), we obtain?

T = e N bie MW (d))

L.

j=—00

zz\t —iA
vd, Kk, )W (dN).
K W ()

Introducing a change of variable from A to A/n, consider the partial sum process

[nr]
Xn(r) =n~1270y " (2.13)
t=1

and note that

[nr]
/ S eg(e
nd+1\/27r/n —r
z/\ ([nr]+1)/n _ ei)\/n ( —iA/n. -d, K, (l)

Xp(r) = M;d,/ﬁ,&)W(d)\)

\/ﬂ /—m eM/n —1) nd W(dA)
~ /_ Lo d, k, ) (N (2.14)

where "=" means that the approximation improves as n increases. Following the first part of
Chan and Terrin (1995)’s Theorem 3.3 we can formalize this intuition as follows, where X is
defined by (2.1).

Theorem 2.1 XninoranyO§d<%,O§f<;§1andOﬁan/Z.

Note that, unlike Chan and Terrin’s theorem, this result covers the standard Brownian motion
case d = 0. It still does not cover the case of —% < d < 0, for which weak convergence is a well-
established property of the time domain representation (see Davidson and de Jong 2000, inter
alia). It turns out that our proof does not work for this case, because the integral in the majorant
side of (A-1) is non-convergent. However, we also note that where the discrete-time process is
both linear and Gaussian, since uniform tightness holds it is sufficient, in view of the identities
n (2.7) and (3.7), to establish that the limit of the variances of the partial sum process matches
that of X. Accordingly, we can prove the following:

?Observe that in the symmetric example a = d/2 just noted, the transfer function ge™) = (2 — ™ —
e~ 4/2 — =(2—2cos\)” 4/2 is simply the square root of the spectral density.



Theorem 2.2 If
1 ™ it —i) —d
Tp = —— et (l1—e W (dA
t vV 27'(' /—Tr ( ) ( )
for —3 <d < %, and X, (r) is defined by (2.13), then X, L X where X(r) is defined by (2.8).

While this statement of the result is given only for the causal member of our class having Kk = 1
and a = 0, note that both the finite-n and limiting variance expressions are generalized to the
cases with 0 < x < 1 and d/2 < a < 0 simply by applying the factor K (d, x, a)?. The result may
be easily extended in this way to our complete class of Gaussian linear processes.

3 The Multivariate Case

It is clear that all processes x; defined by (2.11) have the same spectral density function, and
accordingly the limiting partial sum processes have the same autocovariance structure, the one
usually identified with ‘fractional Brownian motion’. However, it is also the case that these
processes are distinct, and we now consider how they might be distinguished. This can only be
in terms of the relations between different processes.

Consider processes X7 and Xs defined as in (2.1) with parameters (d1, k1, a1) and (da, K2, az)
and driving processes Wy, Wa. The latter are complex-valued Gaussian random measures with
the properties (for j, k = 1,2)

Wi(—d\) = W;(dN) (3.1a)

EW;(d\) =0 (3.1b)
o [ opd\, p=A

EW;(d\)Wi(dp) = { 0,  otherwise. (3.1c)

In this section and the one following we let 0 < d; < % for j = 1,2 We do not attempt to treat
the cases d; < 0 explicitly, although we conjecture that these extensions might be developed on
the lines of Theorem 2.2.

Define
Pia(\) = Y (X dy, k1, a1) T (=X; do, Ko, az).
4
= > 6; expling; sgn(N) (32)
j=1
where

O = rurs, 51:—<a1—a2—d15d2>

Oo=(1—r1)(l—k2), §a=0a1—az— d — da

03 = k1 (1 — K2), £y = — a1+a2_d1—;d2

04 = (1 — K1) Ko f4=a1+a2fd1—;d2

Observe, from (2.1), that the cross-spectrum of the increments is defined as

le(A) = -é()\? d7 R, a)g(_)\a d27 K2, a/2)
= |)\|7d17d2P12()\).



We can notice, for example, that fia()) is real-valued in the ‘time symmetric’ cases, where
either a1 = di/2 and ay = da/2, or kK1 = Ky = %, although not in general. However, we
can potentially learn more by considering time-domain covariances of the Brownian motions,
extending the formulation in (2.6).

Consider the case of contemporaneous increments.
Proposition 3.1 Ford >0 and 0 <r <1-4,

E[(X2 (r+6) = X2 (1)) (X1 (r +6) — X1 (r))]

_ 7120 [cosn’ <a a i — d2)
- di+d P B
F(2+d1+d2)cosw% 2

do

2 (k1 (1 — ka) + (1 — K1) Ko sinmr <a1 - d;) sin <a2 - 2)} (3.3)

Note that this formula reduces to (2.6) in the case X; = X3 = X. We cannot use it to derive the
covariances of non-coincident increments of the two processes, since there is no counterpart to
identity (2.7). However, for the case of non-overlapping increments the following can be shown
directly.

Proposition 3.2 For 0 <ry <ry <rg<ry <1,
(i) Ifdi+d2 >0,
B[(X2 (ra) — X2 (r3)) (X1 (r2) — X1 (r1))]

4
012U (dy, d2) . di +dy
- 0, ¢ 3.4

F(d1+d2+2)sin7r(d1+d2)j - jsmm 2 & (3-4)

where

U(dl, d2) _ (7°4 _ rl)d1+d2+1 _ (7“4 _ T2)c£1+d2+1 _ (7“3 _ 7nl)dri-dz#-l + (7‘3 _ 742)d1+d2+1 (3‘5)

(ii) Ifdi = ds =0,
E[(X2(ra) — X2(r3))(X1(r2) — X1(r1))] = 0. (3.6)

To deal with the case r9 > r3, such that the increments are overlapping, this result may be used
in conjunction with (3.3) and the identity

(Xa2(ra) — Xa(rs))(Xi(re) — X1(r1)) = (Xa(ra) — Xa(r2))(X1(r2) — X1(r1))
+ (Xa(r2) — Xa(r3))(X1(r2) — X1(r3))
+ (Xa(r2) — Xa(r3))(X1(rs) — Xa(r1)).  (3.7)

Consider, for example, the case of non-overlapping segments where X is a backward-looking
process, with k1 = 1 and a; = 0, and X5 a forward-looking process, with ko = 0 and ao = 0. In
this case 01 =62 =04 =0, and &3 = %(dl + ds2), hence (3.4) vanishes, as we should expect since
the lags and leads do not overlap anywhere. However, if ko = 1 and k1 = 0, so that the segment
of the forward-looking process on ry — 1 precedes the segment of the backward-looking process
on rq4 — r3, then #; = 03 = 03 = 0, and the expression in (3.6) reduces to

o12U(d1, d2)

E[(X2(rq) — Xa(r3))(X1(r2) — X1(r1))] = T(2+di+do)



Observe the symmetry of this formula, being invariant to the interchange of d; and ds. In
particular, cases where long memory is a property only of the forward-looking process (d; = 0)
or of the backward-looking process (do = 0) are observationally equivalent. However, if both
segments are backward looking, such that 61 =1 and 6 = 03 = 0, = 0, we get

012U(d1,d2) Sinﬂ'dg
F(?—I—dl +d2)sin7r(d1 +d2)

E[(X2(rs) — Xa(rs))(Xi(re) — Xi(r1))] = (3.8)

which vanishes only if d2 = 0.

4  Stochastic Integrals with respect to fBM

While the results of the previous section may be of general interest, it is the distributions of
stochastic integrals, random variables of the form fol X1dXs, that are the chief practical concern
in econometric analysis. It is well known that these are not It integrals in the case of fractional
processes, and their derivation requires methods different from those used in the case of semi-
martingales such as regular Brownian motion. The problem is addressed in Chan and Terrin
(1995) for the particular case they consider, which corresponds effectively® to our case a; = d;/2
and hence arbitrary x;. In this section we consider the appropriate generalization of their results.

We follow these authors in defining the differential of (2.1) by replacement of the term (e*" —
1)/iX with its derivative, so that

1 1 1 ooe'i)\r_l
X1dXe = — d Gg(\; d Wy (dA
/0 1G9 27r/0 7‘[/_00 Y 9( ) 1,%1,6L1) 1( )

X / €M (s da, K2, az)Wa (dp) | - (4.1)

—0o0

For the case d; + dy > 0, the expected value of this random variable is

1 © 1 _
E / X1dX, = 222 / / |)\|_d1 =& Py (\)dAdr
0

where the form of the last expression can be obtained from (3.2). This formula can be further
shown to have the following closed form.

Proposition 4.1 Ifdy + do > 0,

o2 T(1—d—dy)

4.2
Tt dy  dirdy 20 (42)

1
E/ X1dXs9 =
0
where

1
Q12 = [fﬁﬁ:g sin7 (da + a1 —az) + (1 — K1) (1 — ko) sinm (dy + ag — aq)
+ k1 (1 — kKo)sinm (a1 +a2) + (1 — K1) kesinm (d1 + d2 — a1 — a2)] . (4.3)

Note the following corollary of Propositions 4.1 and 3.1.

3Their model allows for slowly varying components which are, however, absorbed into their normalizing sequence,
so that the asymptotic analysis is equivalent in the two cases.



Corollary 4.1 If dy +ds > 0,

E </01X1dX2 + /OngdX1> = B(X:1(1)Xa(1)). (4.4)

Also note that the case di = dy = 0 has to be excluded from these results because our formula
n (4.2) then reduces to

1
)
E/ X1dXy = ‘712+012// sin Td)\d (4.5)
0

Although its integrand is an odd function, the integral on the right-hand side has the form co—oo,
so that the expectation is undefined.

Now consider some contrasting cases of (4.2). We obtain the last term of Chan and Terrin’s
formula (3.11), apart from scale factor, by setting a; = d;/2 with arbitrary «;, for j = 1,2. In
this case we obtain the closed form

E/l deXQ _ 0’12F (1 — d1 — dg) . <d2 + d1> '
0

T+ di+do)(dr+do) T\ 2

A feature of this model, consequent on the forward-backward symmetry of the lag structure, is
that the formula is symmetric in d; and do. We are not able to distinguish between the case of
longer-memory integrand with shorter-memory integrator and the converse case.

In the case of the causal model, in which k1 = k3 = 1 and a1 = a3 = 0, on the other hand,
we obtain

12l (1 — di — d2) )
X1dX do.
/ VR = U dy + do)(dy + dg) 02

Note, in a result that parallels (3.8), how this quantity vanishes when dy = 0, although not when
d; = 0.

We next proceed to generalize the second part of Chan and Terrin’s Theorem 3.3, which
establishes weak convergence of the stochastic integral. Letting x14, xo; be defined like (2.11)
with parameters (d;, k;,a;) for j = 1,2, our result is as follows.

Theorem 4.1 If0<dy <%, 0<dy; <31 and dy +dy > 0 then

n—1 ¢

1
<X1n,X2n —l-di- Zzw1sw2t+1> < (XLXQ,/ X1dX2>- (4.6)
0

t=1 s=1

Observe that our conditions here are weaker than the min(d;, ds) > 0 imposed by Chan and
Terrin, permitting cases where either of X; and Xs are standard Brownian motions. However, the
case d; = dp = 0 is again problematic, not withstanding that the conditions for mean-squared
convergence established in the theorem are still satisfied. This follows from the fact noted in
(4.5), that the limit specified by formula (4.1) is not an integrable random variable.

The problem arising here can be seen to stem from the approximation of the extreme high-
frequency components implicit in the Fourier transformation. This approximation is negligible in
the long memory case thanks to non-summability of the autocovariances. In standard Brownian
motions, however, it is well known that the equality in (4.4) requires an additional term o1
on the left-hand side, representing the contemporaneous correlation of the processes. It is also
well known that replacing the partial sum Y% x5 = Sy in (4.6) by 3(S1t + S1441) yields
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the Stratonovich integral? having expectation %012, under mean-square convergence in the time
domain, instead of the It6 integral having expectation 0. By contrast, an easy implication of
our proof is that the limit defined by (4.1) is invariant to finite lead-lag shifts of the integrand
sequence in (4.6).

5 Variants of Fractional Brownian Motion in the Time Domain

Let B denote Brownian motion on R with variance E[B(1)—B(0)]?> = o2. The Gaussian stochastic
process on the unit interval [0, 1] with representation

T 0
X0) = iy ([ 0= 9B+ [ 0= o%ase) 6
was termed fractional Brownian motion (fBM) by Mandelbrot and van Ness (1968). Robinson and
Marinucci (1999) have subsequently dubbed this process fractional Brownian motion of Type I, in
contrast with the Type II case in which the second term is discarded. Type II fBM is sometimes
rationalized as the weak limit of a process in which the forcing sequence takes the truncated
form usI(t > 1). However, it’s important to note that the resulting weak limit has a different
distribution, and is not to be regarded as an approximation to (5.1).
It is well known (see for example Davidson and de Jong 2000) that the increment variance of
Type I fBM is defined by
E[X(r+6) — X(r))? = V52!

where

0.2 00
V=EX(@1)? = Fd ) (2d1+ 1 +/0 (T + 1)d—7d]2d7>

_ o?T (1 — 2d)
T d+ I -d)r(1+d) (5.2)

The second equality in (5.2) is a consequence of the following lemma, whose proof we give, for
the record, in the Appendix.

s [ ()

In this section, we extend this time domain representation to a class of the processes whose
harmonizable representation is discussed in Section 2. To be precise, we consider just the cases
with 0 < x <1 and a = 0, since for these the extension of (5.1) is simple and transparent. Let

0

X(r) = /OT[H(T _ 8 (1 — k)sYdB(s) + ﬁ/ [(r — 5)7 — (—s)4dB(s)

. ﬁ)/ 58— (s — r)YdB(s), 0<r<1. (5.3)
Defining the filtration
F={F(r)=0(B(s), s<r),—oco<r < o0}

note that (X, F) are an adapted pair in the case k = 1, which corresponds to (5.1). This is
another way to express the notion of a causal process. Otherwise, X is F(oo)-measurable at all

1See, inter alia, Duncan, Hu and Pasik Duncan (2000).
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points, and hence not adapted to F. With k = %, such that the forward and backward looking
moving averages are symmetric, note that this model corresponds to case (2.10), while with x = 1
it corresponds to (2.8).

We remark parenthetically that there appears no natural way to define a ‘Type II’ variant of
this class of model. Thus, the process { X (r), 0 < r < 1} obtained by deleting the second and third
terms of (5.3) corresponds to the weak limit of a fractionally integrated process whose forcing
sequence takes the form u; /(1 <t¢ < [nr]) for each r. One could truncate the forcing sequence at
n and hence the third integral at 1, instead of deleting it, but this option foregoes the benefits of
simplicity and seems equally arbitrary. There are many ways to construct stochastic processes
having correlated increments, subject to a parameter d, but not all of them have relevance to
econometric modelling.

The next proposition derives the general formula for the increment variances.

Proposition 5.1 E[X(r 4 6) — X(r)]? = V524! where
o? T'(1+d)

Vi dedr ) <2“(1 ~ T+ 24)

+ (1= 26(1 /{))1—‘(1_2(1)) .

I'(1—ad)
We need to check the relationship between this formula and (2.6) obtained in the harmonizable
representation for the case a = 0. The following proposition shows they are identical.

02K (d, 5, 0)2
['(2d+2)cosmd’

Proposition 5.2 V =

The main implication to be remarked here is that the Mandelbrot-Van Ness model (5.1) is shown
to be equivalent to the causal variant (2.8) of the harmonizable representation, these being
Gaussian processes with identical covariance structure. This fact may suggest a further need
for caution in adopting the Type II variant of time domain fBM in the causal model. Hav-
ing nonstationary increments, the Type II variant evidently does not possess a harmonizable
representation.

Since empirical processes will always be subject to an unknown scale factor o, it is not
possible to distinguish the processes represented by (5.3) from one another in isolation, and
is unidentified. However, similar arguments allow us to show that for processes X; and Xs the
covariances of process segments, and F fol X1dXs, depend on k1, k. This can be verified simply
by considering the harmonizable representations in Sections 3 and 4, which yield equivalent
formulae.

It is known (Davidson and de Jong 2000, Theorem 3.1) that if 2; = (1 — L)™%u,, where {u;}
satisfies fairly weak regularity conditions and

[n]
Xn(r) =n"1270Y " (5.4)
t=1

then X, 2 X where X is defined by (5.1), and < here denotes weak convergence in the space
Dyg,1) of cadlag functions on the unit interval, equipped with the Skorokhod topology (see, e.g.,
Davidson 1994, Ch. 28). We can now extend this result as follows.

Theorem 5.1 If
zr=[k(1 = L) 4+ (1 —r)(1 - LY Yu,

for any d € (—3,3) and k € [0,1], and X,, is defined in (5.4), then X, % X under the assump-
tions on u; specified by Davidson and de Jong’s (2000) Theorem 3.1.
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We refer the reader to the cited source for details of the specified conditions, which are quite
complicated to state. It suffices to say that they specify weak dependence in the form of Lo-
near-epoch dependence on a mixing process, at specified sizes. These conditions are invariant
to time reversal, which allows the extension of the results specified in the proof of the present
proposition. Also note that this proposition is not redundant in view of Theorem 2.1, not merely
because it covers the cases d < 0, but because it allows a very general class of weakly dependent
shock processes. While it is possible to introduce additional weak dependence in Theorem 2.1
(we avoid this for the sake of simplicity) note that Gaussianity is a necessary condition, in the
spectral approach.

6 Discussion

In the literature on fractional Brownian motion, there is a tendency to assume the existence of a
single Gaussian process having the characteristics of interest. In the time domain, the formulation
most often cited is the one of Mandelbrot and van Ness (1968). Among many references in the
engineering, statistics and econometrics literature see Flandrin (1989), Samorodnitsky and Taqqu
(1994, Sect. 7.2), Read, Lee and Truong (1995).

However, there is less consensus regarding the so-called harmonizable representation of frac-
tional Brownian motion. Samorodnitsky and Taqqu (1994, Sect. 7.2), which is, perhaps, the chief
reference source on these topics, refers to one of the ‘time-symmetric’ members of our class, that
having a = d/2 and arbitrary s, as the (integral representation of) ‘standard’ fractional Brown-
ian motion, and Chan and Terrin (1995) follow suit. On the other hand, Reed et al. (1995)
cite the ‘causal’ form (k = 1, @ = 0). Kim and Phillips (2001) actually cite the causal version
in the statement of their model, but then switch to the time symmetric case in their working,
while following the Chan-Terrin analysis. This apparent confusion is very likely attendant on the
fact that the underlying stationary driving processes all have the same spectrum. Indeed, Chan
and Terrin (1995) explicitly set up their model by citing the spectral density of interest (|\|*=2
multiplied by a possibly slowly varying scale component), and then selecting the square root of
this function as the transfer function to define their harmonizable representation.

However, as we have shown in this paper, the Mandelbrot-Van Ness time domain model
and the time-symmetric model discussed by Samorodnitsky-Taqqu, Chan-Terrin and other au-
thors, have very different implications for multivariate analysis, despite the stationary increment
processes sharing the same spectrum, apart from scale constants. We note that Chan-Terrin
invoke econometric applications explicitly in their introduction, introduce a unit root autore-
gressive (backward-looking) model, and even quote the one-sided time domain representation
(1 — L)%y, to motivate their formal analysis of the long memory errors. This suggests that they
did not fully appreciate the modelling implications of their chosen harmonizable representation.
When the applications of interest are in time series econometrics, we ought to point out that for
most applications only a single member of our class should generally be considered; the causal
(i.e. exclusively backward-looking) Mandelbrot-Van Ness model, with harmonizable representa-
tion (2.8) having x = 1, a = 0 in the Gaussian case. Time-series processes in econometrics are
almost always thought of as adapted to the filtration representing ‘events to present date’, since
any other setup would contradict our usual understanding of economic behaviour. °

Frequency-domain analysis is a popular research methodology in time series econometrics,
especially in the analysis of long memory and fractional integration and cointegration. We can
cite for example the many contributions of Peter Robinson and co-authors; Robinson (1994a,b),

’Two-sided models could have applications in random field representations involving spatial correlations, for
example.
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Robinson and Marinucci (2001, 2003), Marinucci and Robinson (1999, 2000, 2001) is a non-
exhaustive list covering just one aspect of this research. One obvious motivation for this method-
ology is the greater mathematical tractability often available in the asymptotic analysis of long
memory models. By the same token, however, we see a need to emphasize the potential pitfalls
of modelling dynamic relationships in a framework that may conceal the important role of causal
orderings.

A Appendix: Proofs

A.1 Proof of Theorem 2.1

Our proof is based on the first part of Chan and Terrin’s (1995) Theorem 3.3 (henceforth, CT).
We modify their notation by substituting d + % for Hq, n~1/2=d for an, V21X, for aglUn, and
2ro LK (d,k,a) X for KI:,llBH1 where they define®

0o At
J(JBH(Q::/’ E—LLEMP“*ﬁmadM
o iA

—00

and Ky, = [x~"HI'(2H;) sin mH;]/2. We neglect the possibility of slowly varying components,
which in practice must be incorporated in the normalizing sequence a,,, thereby obtaining the
same limiting formulae for moments, etc..

Following CT, we cite Taqqu (1975) Theorem 2.1 to establish tightness of the sequence, and
accordingly prove weak convergence of the finite dimensional distributions by showing that

E|Xu(r) = X()* =0

for each r € [0, 1]. Note that CT’s expression for U, (p. 1672, line 7 from bottom) is generalized
to our class by replacing |)\|1/27H1 by §(A;d, k,a), which entails inserting the factor Y(\;d, k,a)
defined by (2.4). CT’s case is g(A;d, 1,d/2) where T(\;d, k,a) = 1. However, their expressions

exp[iA([nr] + 1)/n]) — exp(i\/n)
n(exp(ir/n) — 1)

Dy, (’l", )‘) = 1[—n7r,n7r} ()‘)

and
exp(irA) — 1

A

carry over unchanged. Therefore, we need to demonstrate that the following sequence (the
counterpart of CT equation (3.12)), must converge to 0 as n — oc.

D(r,\) =

2m 2 > —d_( —iX/n. 0. 2
ZEIX() ~ X0)P = [ 1Du N tgle N d, . a) - DO VG )P

—0o0

< K(d,,a)? / 1Dy (r, \) — D(r, NP2

—00

4 [ D Pl R (A1)

—00

The definition of the normalizing constant K1 will depend on the member of the class of processes we consider,
of which CT’s case is only one, but we will not state these explicitly. Be careful to note that CT assume W has
unit variance, and also note the error in their definition of K, , omitting the square root (line following (3.10) on
CT page 1671).
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Since D, (r,\) — D(r,\) pointwise on [0,1] x R, to show the first majorant term vanishes it
suffices to show that

/ | Dy (r, M)[P[A| "2 dA :/ | Dy (7, M)A 722N < oo.

—00 —TNn

uniformly in n. Note first that

exp [id ([n7] + 1) /n] — exp (iA/n) |?
n (exp (iA/n) — 1)
lexp [iX ([nr] + 1) /n] — exp (iA/n)|?
In (exp (iX/n) — 1)|?
| 1 (expid ([nr] + 1) /n] — exp (iA/n) (exp [iA ([nr] + 1) /n] — exp (iA/n))
[—nm,nm] n2 (exp (z)\/n) — 1) (exp (—Z)\/n) - 1)
1 2—2cosA[nr]/n
= 1[7n7r,n7r]ﬁ 2 —2cos \/n
1 sin? X [nr] /2n
1[—nw,nw]ﬁm

|D7’L(r7 )‘)|2 = 1[fn7r,n7r]

1[fn7r,n7r]

Therefore, using the results

2
81'n Qk‘x < 32 (A-2)
sin“ x
and 2 2
/ 51?1 kaxdx _ k (A-3)
0 sin” x 2

for integer k > 0, observe that

™m o gin? )
/ | D (7, )2 |A] 724N :/ —%p\r%d)\
—mn —an TL2 sin )\/277,

) /ﬂ'n i Sin2' )\2[717“] /277;)\72ddA
o n? sin*)\/2n

_ 5 ! 1sm /\nr]/Qn)\ Qdd/\—&—/m 1 sin? A[nr]/?n)\ 2,7,
0 sin? \/2n . n? sin)\/2n
1 ™ 2
<9 / e 2d g\ 4 / %wﬂx%dx
0 1 n® sin“\/2n
<9 1 sin )\[nr] /Qn/\ 2,7,
1-— n?  sin?\/2n
< 2( " sin )\[nr] /Qnd)\>
1- sin? \/2n
:2(1 —Qn [n })

2(1_2d ). (A1)

To show that the second majorant term in (A-1) vanishes as n — oo, note that

[n=g(e™) — g(N)|?
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= |K[EA+ O(n )=+ O(n™1)) ™% — (IN)*4(—iN) ]
+(1 = R)[(EA +O(n™ 1)) "4 —iA + O(n™ 1) % — (GN) 4 (—iN)* ] ‘. (A-5)
Taking the first right-hand side term under the modulus in (A-5), note that
(A 4+ O 1)) (=ix+ 0™ 1)) = (1N =iN) " = |A| Y@ (N, a, d).
where

wln()\ a, d) [( imsgn(A)/2 + O( ))afd(efiﬂ'sgn()\)ﬂ + O(nfl))fa o efifr(d/2fa) sgn()\)]
=0(n™"). (A-6)
The same treatment of the second right-hand side term yields an expression wa, (A, a,d) = O(n™1)
similarly. Note that @i, (A, a,d) and way, (A, a,d) depend on A only through its sign, and hence

the squared modulus in (A-5) depends on A only through |A|~2¢. We therefore complete the proof
by applying (A-4) as before. I

A.2 Proof of Theorem 2.2

We show that E[X,, (r)*] — E[X (r)?] for each r € [0,1]. As remarked in the text, this condition
is sufficient for the weak convergence, since the sequence members are linear and Gaussian for
each n > 1 and uniform tightness holds as before, by appeal to Taqqu (1975 Th. 2.1).

The spectral representation of X, (r) is

[nr]

X (r) = n1/2+dz\/ﬂ/_7r e —e—“)_dW(dA)

[nr]

z)\t
n1/2+d\/27r /_Wt -
z)\[m"] —d
' Y
— (1 e ) W (d\)

e”["’”l - 1) (1 - e*“> ).

1 - e—M) W (an)

1/2+d\/ﬂ/
nl/2—i—d‘/27r /77

The integrand can be rewritten as

<6M[m~] _ 1) (1 _ e—u) —t

—d—1
— Anrl/29; gin A[;W] <e_“‘/22i sin ;\)

— 2—d€i)\([nr]+d+1)/2 (Z Sgn )\)—d sin ‘ ’gn ] in—d—l |;|
— 9= dgiA([nr]+d+1)/2 ,~isgn And/2 g5 ) Al [nr] gin—a-1 m
2 2

The variance of X, (r) is therefore equal to

2 9l—2d 7
o2 o AT L oy 9 A
Vo (T):27rnl+2d/0 stTsm 2d 2§d)\



o2 9l—2d
T og plt2d
o2 ol-2d

= orpitad

/2
/ 2sin? o [nr] sin 2472 o dp
0

/
/0 (1 — cos 2 [nr]) sin =242 dip.

By GR Relation 3.621(1),

/2
/ sin™242 o dp = 272473 <—d — 1, —d — 1>
0 2 2

~ md T'(1-2d)
TN d)

where the second equality follows after some manipulation using the properties of the gamma
function. Next,

w/2
/ cos 2 [nr] sin 292 o dp = / cos 2 — = cp) [nr] cos 22 p dyp
0 0
/ cos (m [nr] — 2 [nr] @) cos 22 dyp
0

= (=1)l] / cos (2 [nr] @) cos 2472 o dy
1
22d1( 2d—1) B(—d+ [nr],—d — [nr])
2 T'(1+d+ [nr])
2d+ 1cosmdI' (1 +2d) T (—d + [nr])

= (-

where the penultimate equality follows from GR Relation 3.631(9). Upon substitution of these
expressions into the expression for the variance we obtain

o2 9l-2d T _ 2d - nr
Vo () = 2 ( dl' (1 — 2d) 2 L (1+d+ [nr]) ]))

2 nl+2d (2d + 1) [ (1 — d)]? + 2d+1cosmdT (1+2d)T (—d+ [nr

In the limit, as n — oo, the contribution of the first term in the brackets vanishes. For the
second term we use

T +d+nr]) o ea
1 =1.
AT Cat ) )
Hence,
lim V, (r) = o’ 2+l
n—o00 T (2 =+ Qd) cos d '

The right-hand side is equal to the variance of the fBM process

1 o'} e'L/\r_
)_ \/27T /—oo

To show this observe that the integrand can be rewritten as

! GA)TIW (dN).

ei)\r -1
A

(i)~ = /22 sin )\2 (iA)~?

: A
= 2¢"/2 sin |2|T A7 (isgnA) ¢
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— Qei/\r/267isgn)\ﬂ'd/2 sin ‘;" ’A|fd 7

and, hence, the variance of X (r) takes the form

202 [ A
V(r)= a/ sin? ’i \)\]_Qd_Q d\

T J_so 2

2 2 o)
=7 (1 — cos Ar) A~2072g)
T Jo
_ o? 2d+1
I'(2+ 2d) cos md

where the last equality follows from GR Relation 3.823. 1

A.3 Proof of Proposition 3.1

E[(X2 (r+6) — X2 (1)(X1 (r +6) — X1 (r))]
- % ~ |)\|_dl_d2_2 (1 — cos AJ) Pra(N) dX

—00

Jditda+1  poo
S / o~ (1 - cos ) Pra(z)da. (A-D)

™ —0oQ0
Substituting from (3.2), note that the last integral has four terms, with typical form

/oo |x|_d1_d2_2 (1 —cosz) €558 (@) g = 2 cos S /OOO dx i;ﬁ-d%
mesc g(di +da + 1)
2T (2 + dl + d2)

™ coswﬁj
TTQ4ditdy)  ditdy
2

= 2cos7é;

(A-8)

cos
(see GR, relations 3.761 and 3.823). Direct substitution into (A-7) gives (3.3). I

A.4 Proof of Proposition 3.2

E[(Xz (ra) —X2 (r3)) (X1 (r2) — X1 (r1))]
0O LIAT4 iAT3 —iATo —iAry
g12 € — € ~ & — €
o | oo iX g( ) 27"52aa2) —iN

_ % o) |)\|_d1—d2—2 (ei>\7‘4 _ ei/\’rg) (e—i>\7‘2 _ e—i)x?"l) PlQ()\)d)\
T

g(=X;di, k1,a1) dX

—00
Rearranging the terms with the exponents gives
(6i)\r4 . 62’)0“3) (e—i)\rg . e—i)\rl)

— Nra+73) /2 ,—iA(r2+11)/2 (em(m—m)/z _ e—i)\(T’4—7’3)/2) <€—i>\(r2—r1)/2 _ eiA(rg—n)/Q)

—r3 . (To—7T1
sin A .

— 4etM(ratrs)—(ra+r1)1/2 iy /\T4 2
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Next, define integrals

©dA (ra+mr3)—(ro+m) . ra—7m3 . T2—T1
<I>1:/0 )\d1+d2+2(:os)\ 5 sin A 5 sin A 5

 d\x . (ratry)—(redr) . ra—T3 . T2—T1
<I>2=/ )\d1+d2+2sm)\ 5 sin A 5 sin A 5

and note that

. 00 ei)\[(r4+r3)—(r2+r1)]/2 ) ra—T3 | P
D +1Py = /0 e sin A 5 sin A 5 dA.

The expression for the covariance can accordingly be rewritten as

E[(X2 (r4) = X2 (Ts))(Xl (r2) — X1 (r1))]

20_12 lﬂ'fj sgn()\)ei)\[(r4+r3)—(7’2+r1)}/2 ) ra—T3 | ro — 11
Z / ’)\’d1+d2+2 sin A 5 sin A 5 dA

2 .
2712 29 [ it (I)l + ’Lq)Q) + e_lﬂﬁj (‘I’l — 'L@Q):|

4012 Z 0; (1 cos m€; — Pgsin 7r§]) (A-9)

j=1
The integrand in ®; can be rearranged using a trigonometric identity as

(rqa+rs) ; (ro+m1) sin )\ ; "3 32 ; r1

1 — 1 —
= 5sin)\ (7“4— 7“2—57“1) sin)\r2 5 no_ isin)\ <r3— TZ;“) sin)\r2 5 Tl.

Ccos \

Applying GR Relation 3.762(1) then yields

di + do
mTsecT

2
®) = U (dy,d
78T (dy + dg + 2) (d,d2)

where U (dy,ds) is given by (3.5). Note that ®; = 0 for dy + da = 0.
For @3, use GR Relations 3.763(1) and (3) to obtain

( di + do
T CSCTr 9
U (dy. ds) di +dz >0,
8T (dy + da + 2) (e, ) o
Py =
1
1[(7“4—7“1)1n(7“4—7“1)—(T4_T2)ln(r4_r2) dy +dz = 0.

+(rg—r1)In(rg —ry) — (r3 — o) In(rs — ra)],

Substituting these results in (A-9) yields (3.4) for the case di + d2 > 0. The case dj = d2 =0
implies a; = ag = 0. Hence, §; =0 for j =1,2,3,4 and

40150 .
E[(X2(rs) — Xa(r3)) (X1 (re) — X1 (m1))] = — - Zﬁj sin ¢
=0. I
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A.5 Proof of Proposition 4.1

Since 0 < 7 < 1 we have sgn(\) = sgn(Ar), and making the change of variables x = Ar we can
integrate with respect to r independently. This yields the general formula

1 [e) —1
1— i
E/ X1dXy = J12 dr rd1+d2/ ,76 |:13|7d17d2 Pio(x)dx
o 0 oo T

Y8
g12 1 1 e‘m —di—d
- % 1+di +ds / 1T ‘x’ o P12(x)dx (A—IO)

where Pjo is defined in (3.2), containing terms of the type exp (iﬂfj sgn()\)), where §; is one
of the indicated functions of dy,d2, a1, as. For any such term we can rewrite the corresponding
component of the integral over the real line in (A-10) (say, C(¢;)), as

C;) = / dx 1_176_”6 \a:|7dl*d2 exp (z’wﬁj sgn()\))

x
—d1—d2 eiix —di1—d2 _q .
/ d:n |:1:| exp (mrﬁj / dx 7230 || exp ( mﬁj)
oo 1—6”77 ‘ o] 1_e—i$77 )
_/o dx — D= exp (imé) —|—/0 dx — > exp (—img;)
= Jexp (in€;) + J exp (—in€;) (A-11)

where (-) denotes complex conjugation and

J:/ e 1—e i :/oodxl—cosx—i—isinm
0

jpltditds jpltditds

o d 1 —coszx ood sinx

-, O rad + o T o Trditds
T

= 5F 1) [ i csc — (d1 +da) + sec - (d1 + dg)]
T —iexp (15 (di +da))

- P(l—i—dl—i-dg) Sinﬂ(dl—l-dg)

Using (A-12) in (A-11),
L (1) 40)

(A-12)

Clg) = T (1+dy +dy) sin (dy + da)
I sin 7 (dlLQd2 +§j)
I'(1+di+dy) sinm(dy+da)
and
E/ﬂmeQ—U” E:ecg
0 2 1+ d1 + do i)

_ 012 1 L Zﬁ'sinw L+ da £
S ltdi+dp T (14 dy+dy) sin (dy +da) & 2 !

4
012 P(dl-l-dg) F(l —d —dz) . dy + dsy
— 0. a1 T a2 ,

1+di+doT(1+dy+da) T Z g ST 2 +&

j=1
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1+4+dy+dsy (d1 + da 2

_ 012 F(l—dl—dg)Q
1+di +ds (dl + dg) 12

4
g12 P(l—dl—dg) 1 . <d1+d2 )
= — 0;sinm + <&
) wg :

where

4
1 ) dy + da
Q12=; E 9]'811171'( 5 -l—fj)

j=1
and direct substitution yields (4.3). B

A.6 Proof of Corollary 4.1

Note that EF(X1(1)X2(1)) is given by setting 6 = 1 in (3.3). We show that this formula matches
the sum of (4.2) and the complementary expression having 1 and 2 interchanged. First note,
using the relations

T
F'l+z) =2l (2), Fz)T(l1-2)= pr—
that
1 o 1
I'(2+dy+dy) 14+di+doT (1+4dy+do)
1 D(1—di—do) 1

S l4+di+dy  di+de T (di+de)T(1—dy —do)
1 F(l—dl —dg) Sin?T(dl—l—dg)
1+dy +do dy +da m

Next, from (4.3), using that fact that

K:lliz—i-(l—/il)(l—/ﬁ:g)Zl—,‘il(l—ﬁg)—(l—lﬁll)lﬁg

and also the trigonometric identities

sina+sinfg = QSina—gﬂcosa;ﬂ
at+B . a—f
cosa—cosf3 = —2sin sin
2 2
) 9sin & Q
sina = 2sin —cos—
2 2’

we complete the proof by noting

Q12 + Q21 = % [(k1k2 + (1 — K1) (1 — K2)) (sinm (d2 + a1 — ag) +sinm (dy + a2 — a1))

+ (k1 (1 — k2) + (1 — K1) ko) (sinm (a1 + ag) + sinw (dy + da — a1 — a2))]

2 . di + do d1 —da
= —sinm cosm|ar —as —
T 2 2

— (Iﬂ (1 — K,Q) + (1 — Kl) /£2)

dy —do dy + dy
X (cosm|ar —as — 5 —cosT | al +ag — 5

_ lsinﬂ(dl-ng) |:COS7T <a1 oy — dq —dg)

T dy + da 2
CcOS T ——
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2+ 0 s (- ) s (o )]

A.7 Proof of Theorem 4.1
Following Chan and Terrin (1995, page 1674) define

B 15 oxp(ilt + pa/m) — explip/n) (it + DA
Bn(,u" )‘) - 1[fn7r,n7r]2(/l7 )\)n ; n(exp(i,u/n) — 1) p < n >

and

1 ) — 1
B(u, \) :/ exp(ir)\)wdr.
0 L

We prove, analogous to (3.14) of Chan and Terrin (1995), that

/ / | Bu (i, ™R gy (e ™) ga(e7™) = B, N1 (1)d2(\) Pdpd A — 0
as n — oo. Note that

/ / 1B (1, Ny~ g (=) g (=) — By, N)iia (1)) P
< KRG [ [ 1Baln ) = Blu NPl dudy
/ / NP1 (0, )Pl 24 A2 dpdA. (A-13)

where G;(A\) = g(\; di, ki, ai), 9i(L) = g(L; d;, ki, a;) and K; = K(d;, ki, a;), for i = 1,2, and

® (A 1) = 12 (11, N) [ A2 (7B R g (e M) ga(e7 ™) = Gi()Ga(V)]. (A-14)

The factor 1{_p,x ;,z2(#, A) can be optionally included in (A-14) since it does not change the value
of the integral in (A-13).

It is required to show that both the terms on the majorant of (A-13) converge to 0. It is easy
to see that By, (u, A\) — B (11, A) — 0 pointwise in R?, so in respect of the first term it suffices to

show that
| B DR A < o
uniformly in n.

At points inside [—7n, n] X [—7n, ),

Bl = 5 Lep =SB e i k1) )
k=1

x Zl Lexp (Zip (g +1) /n) = exp (Zin/n) o o3 (G +1) /n)

n (exp (—ips/m) — 1)

j=1
= V(i) + Sp (11, A) + S (1, ) (A-15)
where
B =1 lexp (ip (k + 1) /n) — exp (ip/n)[? _ 1 2 [sin (uk/(2n))
= 3 S 2 [ |
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5=3" i L [exp (ip(k +1) /n) — exp (ip/n)] [exp (zip (5 +1) /n) — exp (—ip/n)]

n? n? (exp (ip/n) — 1) (exp (—ip/n) — 1)
x exp (iA (k= j) /n)

1 exp (ip(k—j) /n) —exp (—ipj/n) — exp (ipk/n) + 1 . S
i ;2; (exp (ip/n) — 1) (exp (—ip/n) — 1) exp (iA (k = 7) /n)

and S, is the complex conjugate of S,,. Consider the last two terms in (A-15). Note that

/ / (Sp + ) 1|72 |\ 7% dpd

n—1k—1 an d\
exp (iA(k —j) /n) —-
y /’r” exp (ip (k — j) /n) — exp (—ipj/n) —exp (ipk/n) + 1 dp
- n? (exp (ipn/n) — 1) (exp (—ip/n) — 1) |2

-/ " exp (mi (k — ) m) 22

- |A[2%

" /”" exp (—ip (k — j) /n) — exp (ipj/n) — exp (—ipk/n) +1 du

_mn n? (exp (ip/n) — 1) (exp (—ip/n) — 1) |4
1 n—1k—1 B ‘ d\
= ”2;23-—1 [/mexp (1A (k=) /n) e
" /”" exp (ip (k — j) /n) — exp (—ipj/n) — exp (ipk/n) +1 dp
—n n? (exp (ip/n) — 1) (exp (—ip/n) — 1) |
™ ) ) d)\
+ /mexp (X (k—7) /n) ])\]T'b
y /”” exp (—ip (k — j) /n) — exp (ipj/n) — exp (—ipk/n) +1 dp
—n n? (exp (ip/n) — 1) (exp (—ip/n) — 1) | >
n—1k—1 . d\
n kZQZ/ e AP
" /”” 2 (1 + cos (u(k — j) /n) — cos (uj/n) — cos (pk/n)) du
—n 2(1 — cos (u/n)) >
n—1k—1 d)\
—F L [ et
Jj=
" /”” sin? (uj/(2n)) + sin® (uk/(2n)) — sin? (u (k - j) /(2n)) dp
0 n?sin” (u/(2n)) ph
(A-16)

where in the second equality we did a change of variable from A to —A and in the third we
collected terms and cancelled odd components.
Consider first the integral with respect to A.

o Mk —7) dX 1 Mk —7) dX\ o Mk —7) dX\
/ (:osu = / cosu + / cosu
0 0 n 1

n )\2d2 )\2d2 n >\2d2
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1 ™ s
</ dA +/ cost)\
0 1

)\2d2 n
1 sin (k—j) /n
C1-2dy, (k—j)/n

1

1-— 2d2

S < 1. Next consider the integral with respect to p. Using (A-2) and (A-3) we have

using

/“" sin® (u5/(2n)) + sin? (uk/(2n)) — sin® (u (k — ) /(2n)) dp
0

n?sin? (11/ (2n)) 20
) / sin? (1 /(2n) + sin? (uk/(2n)) + sin? (u (k — §) /(2n)) du
= Js n?sin? (1) (2n)) 2
N / s (s (2n) + sin® (uk (2n) + sin” s (k= 5) /(2n)
1 n?sin? (1) (2n)) o0

< /112 (42 + K2+ (k= 5)?) /fiffl
0 n
™ gin? (17 (2n)) + sin? (uk/(2n)) + sin? (s (k — 5) /(2n)
* /0 w2 sin? (1 (2n)) e

du 2n . .
/O 6W+— T(j+k+ (k—j))

<
_1—2d1+

Substituting these bounds in (A-16) yields

20 N2 gd) < 4 1 47 ) .
/_m/_m (Sn + 8n) [l 7 WP dpdd < 4{ g5 1) { ggg 4

Next, considering the first term in (A-15), note that

L vl 2 dan

1 /™ (2
-1 |A|*2d2dAfZ / k] B) 2 g,

mn sin? (11/(2n))

_é " —2dy in sin® (,uk/(2n)) —2d;
- n/o A d)\n3 kzzl/o sin? (u/(2n)) po g

1—2dg n—1 1 -9 ™m .2
_ An n—2d2i3 < / sin 2(Mk/(?n)) = / sin 2(uk/(%)) 2 dﬂ>
1—2dy n? = \Jo sin®(u/(2n)) 1 sin® (p/(2n))
Ar' P 1 < /1 ™ gin? (uk/(2n))
< —n "2 k2p2hq +/ ———d )
ST U B | R Gy
1-2d n—1 ™m s
< 4r 7 —2d2i3 Z < n? +/ Sl‘nz(ﬂk/@n))dﬂ)
1—2dy n? = \1-2dy  Jo sin®(u/(2n))
_ 47_‘_172(12 ,2d2in71 TL2 2nlk
1—2ds n3 P 1—2d; 2
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47T1 2do
< 72d2 2
_1—2d2 77,32( 2d1+n7r)

1—2do
4

1
< 72d2
=1 2dy" (1—2d1+”>

< 47‘-172‘12 < 1 +7T> < 00
—1—2dy \1—2d; '
Observe that this term vanishes for ds > 0, although not for do = 0.
The same argument can be invoked again to show that the second majorant term of (A-13)
vanishes, provided ®,,()\, i) is bounded uniformly in n, and converges to 0 pointwise in R2. To
show this, recall that

31102 (N) = [l ™A "2 Y (s di, k1, a1) Y (N da, K2, an)

where
T (p; du, k1, a1) Y (A; d2, K2, az)
— Ky ke iml(d1/2—a1) sgn(p)+(dz/2—az2) sgn()]
+ (1 = k1) (1 — ko) el(d1/2=a1) sgn(u)+(d2/2—az) sen(V)]
+ k1 (1 — kg) e ¥ml(d1/2—a) sgn(p)—(d2/2—az) sgn(A)]
+ (1 = Ky) koe'Tl(d1/2=a1) sgn(u)=(dz/2-az2) sgn(N)]
From (2.12) the expression n‘dl_ng(e_i“/”;dl,/ﬁl,al)g(e_”‘/”;dg,mg,ag) can be decomposed
similarly, into terms with coefficients k1k2, (1 — K1) (1 — K2), k1 (1 — K2) and (1 — k1) k2. Pair-

ing up these matching terms, ®,,(A, 1) can be therefore be decomposed (defining functions ¢y,,,
k=1,...,4 in the obvious manner) as

On (X, ) = Kikogr, (s A) + (1 = K1) (1 = K2) dop (14, A)
+ 11 (1 = K2) @35, (1 A) + (1 = K1) Kadan (1, A).
We consider the term ¢;,, as representative. This takes the form
O (18, ) = 12 (11 X) |1 7 A2
% [nfd17d2(1 _ emin/mym—di(] _ gin/ny=ar(q] _ gmiMnyaa—da(q _ gid/ny=a
_ e~ irl(d1/2—a1) sgn(p)+(d2/2—az) Sgn()\)]]'
Note that
n*(1— e /M) = (i 4+ O(n~1))*
= [ (™02 1 O )
and hence
S (185 ) = 12 (1 V) [((€7*82 /2 1 O (1)) 1 (7802 4 O(n 1)) ™)

% (eiﬂ'sgn( )/2 +O ))ag dg(e—msgn A)/2 +O( ))— )
_ e~ iml(d1/2—a1) sgn(p)+(d2/2—a2) Sgn(/\)]]_

It can be verified that ¢y, (11, A) is absolutely bounded everywhere in R2, and ¢;,, (1, A) = O(n™!)
follows similarly to (A-6). Precisely parallel arguments apply to the terms ¢y, (i, A) for k = 2,3, 4.
This completes the proof. §
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A.8 Proof of Lemma 5.1

We need to compute the integral

G(d) = /OOO [(m +1)t - xdr dz

for —1/2 < d < 1/2. Denote the integrand by f(x). Note that for d = 0 the integral is trivially
zero. For 0 < d < 1/2 we have lim,; 1 |f (z)] = 0, limy—o|f ()| = 1, and the function is
integrable, for both positive and negative z. For —1/2 < d < 0, we have lim,_, 1 |f (z)| = 0, and
f (z) has a singularity at x = 0 with lim,_,o ‘ f(x) x*2d‘ = 1. Hence, is it integrable on the positive
half-line. For < 0 it also has a singularity at 2 = —1 with lim,_, 1 | f () (z 4+ 1)"%?| = 1, and,

therefore, is also integrable on the negative half-line.
Thus, consider the auxiliary integral

G (d) = /_ Z (@) da.

It is easy to see that for d # 0 this integral equals zero:

G*(d):/oo [(x+1)d—xd]2 dz

S G R R RV A
= (-1)* /_Z lv! = (y+ 1)dr dy
— 2l (q).

Next, divide the range of integration into (—oo, —1), (—1,0), and (0,00). For the first interval
change of variables £ = —x — 1 gives

/_:f(a:)dx:/_l [(x—l—l)d—:ndr dz

_ /oo (2~ (2~ )] az
0 N ,

- (—1)2“/0 [i“d — (@ + 1)d} d7

_ GZMdG(d).

For the second interval we have

0 0 2
/lf(x)dx:/l [(:E—I—l)d—xd} dx

0
:/_1 [(x+1)2d+x2d—2(x+1)d:rd} dx

1 B 1 __2d+1__dla—jd _ 2 gz
(1-0)+ (0-(-1) )2(1)/0 (1-2)d

T2 +1 2d + 1
1 2imd )
= ;;l% — 26“TdB(d+ 17d+ 1)
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where in the last integral we used change of variables £ = x + 1. The integral over the third
interval is simply G(d). Adding the integrals over these three intervals we obtain

14 62i7rd

2imd
e“mG(d) + 21

— 2™ B(d+1,d+ 1)+ G(d) = 0,

or,

2imd
G(d) 1 ( 1+e

T 1+ U 2d+1
1
2d+1

+ 2™ B(d +1,d + 1))

[—1+ (2d + 1) sec(nd) B(d + 1,d + 1)].

Note that this expression formally captures the result G(0) = 0. Further, using the functional
relationships

I'(x)I'(y) T(1—2)0(z) = T ['(z+1)=al(x),

B = —"c
() I(z+y)’ sing’

we can express the integral equivalently as

1 [T(d + 1))* sec(nd)
Gld) = 2d + 1 ( I'(2d+1) _1>

or

) 1 <P(1—2d)r(1+d) _1)'

T 2d+1 T(1—d)

A.9 Proof of Proposition 5.1

By (5.3), and the orthogonality of Brownian motion, we may write
E[X(r+0)— X(r)?
46
= 02/ (/42(7“ +0—5)2 4+ (1 —r)2(s—r) 2 +26(1 —r)(r+06—5)%s — r)d> ds

+ 02k? /T [(r+0—s)%— (r —s)%%ds

—0o0
o0

0'2 —/f2 S—Tr— d—S—'I"dZS
+o21 >/T+6[< 51 — (s - r)Y2d

= g2§%d+! (/1 (H2(1 —5)% 4+ (1 - k)%s% + 26(1 — k) (1 — s)dsd> ds
0

(1 = 26(1 — K)) /Ooo[u +s)d - sd]2d3>

) 2 (1 — 2d) L(d+1)°
_ 5241 o 1 <(1 —2kr(1 — n))m +2k(1 — FG)IW)

and the proposition follows directly on rearrangement. Note that the second equality makes a
change of variable, and the third one substitutes the complete beta function and from Lemma
5.1.1
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A.10 Proof of Proposition 5.2

Use the properties of the gamma function

™

T(2)T(1—2) =

T 1) =20
sinwz’ (w+1) =2T(z)

to do the following transformation:

ra-2d) s I' (d)sinmd
['(1-d) T (2d)sin2rd I
B 2d  T(d+1) sind
S T'(2d+1) d 2sinwdcoswd
Td+1) 1
- I'(2d+1)cosnd’

Substituting this equality yields
2 Fd+1) 1 I'(d+1)

o
V= Garora+ (=260 =) T cosma T 2P~ Mg 11)

B o? 'd+1) 1-2k(1—k)+2k(1 —K)cosnd

C (2d+ 1) (d+1)T(2d + 1) cos d

91 —=2K(1 - kK)(1 —cosd)

-7 I'(2d + 2) cosd

,  K(d,&,0)?2 .
['(2d+2)cosmd’

A.11 Proof of Theorem 5.1
Write x; = kxye + (1 — k)2 Where

oyt = (1 — L) "y, = (1~ L)y

The result X, 4, X;, where Xy, (r) = n~1/2-d Zy:l} xp: and X is the process in (5.1), follows
from Theorem 3.1 of Davidson and de Jong (2000) (henceforth, DDJ).

To deal with X, the forward-looking increment process can be converted into a backward-
looking process by reversing the time ordering. Define v, = u,_t11 for —oo < t < oo, and
let

2t = Tpnty1 = (1 — L) vy

Then,

[nr]
Xpn(r) =020y
t=1

n

n
— p-1/2—d Z g — Y2l Z .
t=1

t=[nr]+1
n n—[nr]
= 1/2-d Z ot — m /27 Z Znt- (A-17)
t=1 t=1

Although {v,;} and {z,:} are technically arrays, note that they are stationary processes. Their
distribution is invariant to n, and they satisfy the conditions of DDJ Assumption 1 for any choice
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of n. In effect, Xy, is equivalent to a ‘backward-looking’ partial sum process in which the starting
date shifts backwards in time as n increases, with a fixed terminal date. However, the sequence
of distributions defined by letting n — oo is invariant to these shifts, and matches that of the
conventional ‘fixed start’ process at each point. Hence, DDJ Theorerm 3.1 can be invoked to

establish the joint weak convergence of each term in (A-17), and Xy, 4 x ¢ by the continuous
mapping theorem. The limiting random variable for each r takes the form.

1 1-r 0
X¢(r) = /0 (1—s)%dB — /0 (r — s)4dB —/ [(r — ) — (—s)YdB

—00

:/OlsddB—/rlsddBJr/roo[sd—(s—r)d}dB
:/OrsddBJr/roo[sd—(s—r)d}dB

where the second and third equalities follows by changes of variables and rearrangement.
Finally, it further follows by the continuous mapping theorem that

X, =Xy, + (1 — K)an
Xy + (1 - R X=X

Note that this argument depends on the {u;} process being reversible without altering the de-
pendence structure. Thus, if the initial FCLT was established using the assumption that u; was
a martingale difference, the second stage of the argument would fail. However, the theorem of
DDJ specifies that u; is La-near-epoch dependent on a mixing process, and this characterization
of dependence is preserved under time reversal. I
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