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Abstract

This paper considers methods for testing directions of causation in the paleoclimate series
for temperature and CO2 concentration derived from Antarctic ice cores from 800,000 years
BP. These series are well-known to move together in the transitions between glacial and inter-
glacial periods, but the dynamic relationship between the series is open to dispute. Bivariate
models are constructed, in the context of which we perform tests for Granger causality, or in
other words for asymmetry in the pattern of dynamic interactions. An important question is
the stationarity of the series, because different statistical techniques are called for in station-
ary and integrated models. Previous work with climate data has focused on a cointegration
approach appropriate to integrated series, but a range of tests show no evidence of integrated
behaviour in these seres. A second important question is linearity, whether the dynamics
in mean can be adequately represented by a high-order vector autoregressive process. This
modelling approach is compared with a nonlinear Markov switching mechanism, in which the
glacial/interglacial switches are controlled by a common hidden discrete process with fixed
conditional probabilities of changes of state. A further characteristic of the data that comes
to light is pronounced conditional heteroscedasticity, with much larger disturbances in evi-
dence around the glacial/interglacial transitions.This data feature is effectively accounted for
by fitting a GARCH component.

1 Introduction

Climatic data gathered from cores drilled in the Antarctic ice cap have played a prominent
role in the debate on the causes of climate change. Measurements include the concentration
of carbon dioxide and other gases in air trapped in bubbles in the ice, and the proportions
in the water content of the heavy hydrogen isotope deuterium. It is argued that because water
molecules containing deuterium are heaver than the commoner variety, the water vapour resulting
from ocean evaporation has a lower deuterium content than the ocean, and the effect is more
pronounced in colder climatic periods. The deuterium content of water vapour subsequently
falling as snow is accordingly held to reflect the surface temperature of the ocean. A temperature
proxy, in degrees Celsius, is generated as a linear transformation of the deuterium concentration.
The samples are dated by counting the seasonal snowfall variations, subject to corrections to
allow for the fact that gases are only locked into bubbles and isolated from the atmosphere at a
date (the gas age) some time after the snowfall (the ice age).

Time series for temperature and CO2 concentration, plotted in Figure 1. The ordering of
observations is chronological, with the oldest to the left and most recent to the right, with the
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horizontal axis showing age in thousands of years BP. Temperatures are measured as the difference
in degrees Celsius from the average of the last 1000 years, and COy concentration is measured
in units of parts per ten thousand by volume.! The series show substantial periodic variations
dividing the historical record into the so-called glacial and interglacial periods. There is clearly a
strong association between the temperature and COq records over these cycles, which are assumed
to reflect variations in the precession, obliquity and eccentricity of the Earth’s orbit (see Imbrie
et al. (1992), Berger et al. (1978), Liithi et al. (2008)). However, the precise mechanism by
which these geophysical phenomena affect temperature and CO2 concentration in the way that
they do remains unknown.

There has however been speculation that greenhouse gas concentrations may have driven
temperature over the glacial cycle. It has in fact been observed (Caillon et al. 2003) that at least
in one specific episode (Termination III) the changes in the temperature record appear to lead
those in COg concentration by an order of 800+200 years. Fischer et al. (1999) estimated that
increases in CO3 lagged temperatures in the Vostok record by 6004+400 years at the start of the
last three Terminations. Mudelsee (2001) undertakes a parabolic regression analysis to determine
phase relations in the Vostok data, and finds a lag of 1300 years of CO2 behind the deuterium
proxy. However, a formal statistical test of causality applied to the whole 800,000 years span of
available data, has not so far been attempted. This paper attempts to bring new methods to
bear on this problem. The econometric testing technique to be applied involves constructing a
dynamic parametric model to capture the characteristics of the data, within which the restrictions
of interest can be defined.

The fundamental idea of testing directions of causation in economic data is due to Granger
(1969). So-called Granger causation of a time-series variable Y by another variable X is the
phenomenon that the information contained in X can be used to improve forecasts of future
values of Y. Two-way Granger causation, in this sense, would be likely to imply that X and Y
are both driven by some, possibly unobserved, third force. One-way Granger causation, on the
other hand, where the property does not obtain when the roles of the variables are interchanged,
is evidence in favour of a direct causal mechanism.

Given the close relationship over time between the COy and temperature series, forecast-
ing potential in at least one direction is to be expected. The hypothesis that variations in
CO4 concentration drive variations in temperature would be supported by the finding that CO»
Granger-causes temperature, whereas temperature does not Granger-cause COs. Such a finding
would be a key piece of evidence for the hypothesis of global warming due to anthropogenic
increases in CO4. In any other case, however, we should have to conclude that the paleoclimate
record can tell us little, one way or the other, about anthropogenic global warming.

2 The Data Set

The data used in this study are taken from the website of the US National Oceanic and At-
mospheric Administration (NOAA) National Climatic Data Center.? The source of the data is
the European Project for Ice Coring in Antarctica (EPICA) Dome C. The raw data on temper-
ature, described in Jouzel et al. (2007), take the form of 5,800 core samples, for each of which
are reported the depth of the sample, the imputed date, the deuterium content of the ice, and
the imputed temperature. The formula used to construct the temperatures, discussed in Jouzel
et al. (2003), is approximately linear, but varies depending on the age of the samples, as can be

!The published data for CO2 concentration are expressed in parts per million by volume (ppmv). We divided
this series by 100 for the purposes of plotting and calculations, to minimise the differences of scale.
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seen in the scatter plot of the two series (See Figure 2). This plot distinguishes the age of the
observations by the shading of the points, with the darkest points being the most recent and the
lightest, the oldest. While the mean interval between observations is 138 years, the older obser-
vations are considerably sparser than the recent ones, as can be seen in the time plot of these
intervals in Figure 3(a). However, the intervals exceed 1000 years on only about 25 occasions, at
the earliest dates.

The COs measurements, on the other hand, number only 1098 to cover the same 800,000
year period. This is the concentration of the gas in trapped air bubbles, representing a much
smaller proportion of each sample than water. Also, this is a composite series combining data
from the EPICA and Vostok sites. The intervals between the observations are plotted in Figure
3(b). Don’t overlook the large difference in both the vertical and horizontal scales in these plots.
The mean interval between COs measurements is 729 years, but over 40 of the intervals exceed
2000 years. These gaps presumably correspond to periods of low precipitation, so that a shorter
time span yields too small a sample for analysis.

A key issue in the interpretation of these series is the dating of the COs observations. Fol-
lowing an initial deposit of fallen snow, atmospheric air is capable of diffusing into the partially
consolidated snow (so-called ‘firn’) for some time before it becomes compressed into ice and the
air therefore trapped. It is important to distinguish the ice age (the age assigned to the deu-
terium record) from the gas age (the age assigned to the trapped air). This issue is analysed in
Barnola et al. (1991). Since matters of timing are critical to the question investigated here, we
acknowledge that our results depend critically on the correctness of these assigned ages.

The main issue needing to be treated here is that of transforming the data into a form
amenable to parametric modelling. The essential requirement is for a set of observations equally
spaced in time. The usual modelling framework cannot accommodate irregular observation dates.
Time series with irregularly spaced observations have been studied in a univariate context, for
example by Robinson (1977) using a simple diffusion model, but a multivariate analysis of dated
interactions between variables with different irregular observation frequencies lies beyond the
reach of standard econometric methods. However, a feasible approach is to choose a suitable set
of equally spaced dates, and then attempt to impute values to the variables on these dates by
interpolation.

Because of the lower frequency of the CO9 observations, it will be necessary to discard the
greater part of the temperature measurements to define matching data frequencies. Simple linear
interpolation corresponds to joining up the (recorded date, recorded value) pairs by straight lines
and then reading off the values of this continuous record at the chosen intervals. The obvious
alternative method is to fit a cubic spline, which would be appropriate when the data points are
sparser on average than the desired intervals. In these data, the two methods must deliver very
similar results, and linear interpolation is much simpler to implement and to interpret.

Given the thousand-odd CO4 observations, it will be appropriate to extract from these some-
what fewer than 1000 data points. Choosing intervals of 1000 years results in 798 imputed data
points. Choosing 500 year intervals yields twice as many points, but then the majority of the im-
puted CO4 values would depend on the same observations as their neighbours, with a consequent
spurious dependence in the series. On the other hand, choosing 1500 year intervals would yield
534 data points, so that with this frequency almost half the CO5 observations would effectively
be discarded. There is, inevitably, a trade-off of disadvantages here. Higher frequencies risk
distorting the relative timing of CO2 and temperature observations, such that a nominal ‘lagged
value’ in one variable may often depend on a contemporaneous shock. Lower frequencies, on the
other hand, remove key information through aliasing. In either case, there are sections of the
sample where the CO2 data are very sparse and several successive time periods must depend on
the same data points. Figure 3 indicates the locations of these problematic points. It seems that



Lag(+)/Lead(—) of COq 2 1 0 -1 -2
Levels 0.790 0.845 0.884 0.891 0.876
Differences 0.013 0.198 0.430 0.346 0.170

Table 1: Correlations beween temperature and lags and leads of COa.

this problem is unavoidable, but there are hopefully too few such points to significantly distort
the outcome of the analysis. Given these considerations, we elect to use the 1000 year interval
data in this study.

Valid tests of Granger causality depend critically on the timing of the observations, and given
the element of uncertainty regarding the gas age-ice age difference, there is a temptation to
experiment with alternative dating schemes. However, it is not clear that any simple translation
would be appropriate, and to second-guess the authors of the data sets without the requisite
expertise appears in any case unwise. By construction, our interpolated data set will not be
able to discriminate timing differences of less than 1000 years, and our tests will require lagged
effects of at least this order to have power. It is encouraging to observe that in our interpolated
series plotted in Figure 1, the main glacial-interglacial shifts appear closely coordinated. More
formally, a natural check to perform is to compare the contemporaneous correlations of the series
with those of low-order leads and lags. This is done in Table 1, for the levels and differences of the
series respectively.® Interestingly there is a slightly higher correlation of temperature with future
CO4 than with contemporaneous COs although this effect is not apparent in the differenced
series, which is certainly the more relevant case in this exercise.

3 Initial Examination of the Data

Previous econometric work on climatological series from the more recent past has tended to focus
on nonstationary time series modelling using a cointegration approach; see, among other studies
of this type, Kaufman and Stern (2002), Kaufman et al. (2007, 2010) and Mills (2007). However,
there is little visual evidence for unit root or other nonstationary behaviour in the series plotted
in Figure 1, Notwithstanding the pronounced alternation of glacial and interglacial episodes, we
also note that the series are confined within fairly well-defined limits, and even exhibit a type of
mean reversion.

The patterns of variation also show quite a pronounced asymmetry, with more extreme vari-
ations evident in the inter-glacial periods than in the glacial periods. This suggests that a
monotone transformation may be appropriate for modelling the series subject to a Gaussian par-
adigm. Before doing any further analysis, we take logarithms of the series after first adding a
constant to the temperature series sufficiently large to ensure positivity and an approximately
symmetric distribution of data points around the central tendency. The chosen shift is 16 units.
The CO3 series, being positive by construction, is not shifted. Let it be emphasized that this
transformation would not allow estimated coefficients to be interpreted as elasticities.* The para-
meterization is from this point of view arbitrary, but is chosen in conjunction with the functional
forms to be adopted to yield representations of the data generation process that are hopefully
adequate for our purpose. A more detailed justification of these choices is given in the sequel..
These transformed series are plotted in Figure 4.

3The series used in these calculations are the logarithmically-transformed cases as described in Section 3 of the
paper.

4For this purpose we would need to express temperature in degrees Kelvin.



log(Temp+16) log(CO2)
Statistic p-value Statistic p-value

Tests of I(1):
ADF Test* —4.73 [3] < 0.01 —4.23 [3] < 0.01
PP Test*™* —4.94 [5] < 0.01 —4.10 [5] < 0.01
ERS, DF-GLS* —4.56 [1] < 0.01 —3.93 [3] < 0.01
ERS, P Test** 0.530 [4] < 0.01 0.757 [4] < 0.01
Tests of 1(0)
KPSS Test*™* 0.129 [13] <1 0.228 [13] <1
V/S Test™* 0.063 [13] 0.563 0.202 [13] 0.037
Modified RS Test** | 1.072 [13] < 0.8 1.65 [13] < 0.1
RL Test! —1.23 [12] 0.891 —0.499 [12] 0.691
HML test } 7.631 0 7.60 0
* Lags (in square brackets) chosen by Akaike’s criterion.
** HAC variance computed with Parzen kernel and bandwidth (in square

brackets) chosen by the Newey-West (1994) plug-in method.
T Bandwidth (in square brackets) from Lobato and Robinson (1998) formula.
! Setting ¢ = 1, L = 0.66,.sce Harris et. al. (2008) for details.

Table 2: Tests for unit roots (I(1))and stationarity (I(0).

Table 2 shows the results of a range of classic and more recently derived tests for unit roots
and for the null hypothesis of stationarity and weak dependence, applied to the transformed
series.” These null hypotheses are referred to respectively as “I(1)” and “I(0)”. ADF denotes the
augmented Dickey-Fuller test (Said and Dickey 1984), the PP test is from Phillips and Perron
(1988), and the ERS tests are from Elliott, Rothenberg and Stock (1996). The KPSS test is
from Kwiatkowski et al. (1992), the V/S test from Giraitis et. al. (2003), the modified RS test
from Lo (1991), the RL test from Lobato and Robinson (1998), and the HML test from Harris
et al. (2008). The p-values shown are computed exactly from asymptotic tables where available.
In the case of p-values computed from Monte Carlo simulations, upper bounds according to the
tabulated points are indicated by "<".

Clearly, the I(1) hypothesis is decisively rejected by all the tests. The results on the I1(0)
hypothesis are more ambivalent, in general failing to reject but with some disagreement between
the criteria. The KPSS, V/S and RS tests represent different ways of comparing the cumulated
process to a Brownian motion, while the RL test is based in the frequency domain and tests
essentially that the spectral density is finite at he origin. The HML test, which notably rejects
the null hypothesis decisively, is based specifically on the distribution of the high-order sample
autocovariances.

It may be argued that I(1) is an improper null hypothesis in the present case due to the
evidence that the series move within fixed upper and lower bounds, in spite of the appearance of
stochastic trending behaviour within those bounds. A bounded random walk model with these
features has been studied by Cavaliere (2005) and Granger (2010). Cavaliere considers the case

Xt == 9+}/t
Y, = Y;t—1+€t+§t—gt

where ¢; is a weakly dependent process and & . and &, are non-negative ‘regulator processes’ such

>All the calculations in this paper were carried out using the Time Series Modelling 4 econometrics package
(Davidson 2013) which runs under the Ox programming system (Doornik 2009).



log(Temp+16) log(CO2)
SAR 0.0837 0.0253
Sample initial value Xq 1.998 0.642
b = sample maximum 2.984 1.082
b = sample minimum 1.748 0.546
c 0.417 0.613
c -0.106 -0.135
5% Critical Value from Simulations -3.97 -3.61
1% Critical Value from Simulations -4.58 -4.31

Table 3: Unit root tests subject to barriers: data features

that b — 0 < Y; < b— 6. and hence X; is confined within the interval [b,b]. If the bounds
b and b are known, it is possible to consider a test in which the bounded random walk forms
the null hypothesis. Cavaliere and Xu (2012) derive a test of this hypothesis based on a Monte
Carlo simulation of the limit distribution of regulated Brownian motion. This simulation can be
performed for the sample size appropriate to the observed data, but note that the bounds defining
the approximating distribution must be linked to the long-run variance of the shock process &;.
The limit process is a regulated Brownian motion BS where ¢ and ¢ are nuisance parameters on
which the distribution depends. Cavaliere and Xu (2012) show that ¢ and ¢ can be consistently
estimated by the respective formulae

= T7Y2(b—Xo)/sar
TY2(b— Xo)/sar

) ol

where T is sample size, X is the initial value of the sequence and s4p denotes the the au-
toregressive estimator of the long-run variance of the differences. Note the implication, that
to validate the asymptotic approximation the bounds b and b must be assumed to diverge at
the rate TV/2; clearly, the Brownian approximation cannot operate if the bounds are too close
together, relative to the range of variation of the difference process. The Cavaliere-Xu test is
implemented by simulating the standard Dickey-Fuller statistic in a Monte Carlo exercise with
artificial samples of, in the present case, length T"= 798 to match the observed series. These are
generated by a bounded random walk with bounds cand ¢, as appropriate for each series, and
independent Gaussian shocks ef having variance 1/7. The bounds were imposed by the data
generating equation
Xf=2+ (X7, +e -0 +2-0)

where (.)* and (.)~ denote respectively the positive and negative parts of their arguments. The
problem is to choose values for b and b. The tighter these are chosen, the further the test
distribution will be shifted to the left and the smaller the critical values. It makes sense to verify
the test outcomes under the extreme case, setting the bounds to the actual recorded maxima and
minima of the series, since a rejection in this case cannot be contradicted by different choices.

The relevant statistics for the construction of the test tabulations are shown in Table 3 together
with the critical values estimated from 10,000 Monte Carlo replications, in which the augmented
Dickey-Fuller statistics are computed from samples of size 798 with three lags, to match the
selection for the results reported in Table 2. It is clear, by comparing the critical values in Table
3 with the ADF statistics in Table 2, that the bounded unit root hypothesis is also rejected by
these data, at or near the 1% level.

Another view of these data properties is provided by Table 4, which shows the results of
Johansen tests for reduced rank in the context of a vector autoregression of order 10, selected



Maximum Eigenvalue Test Trace test
Rank | Statistic p-value Statistic p-value
0 59.43 < 0.01 74.38 < 0.01
1 14.94 < 0.01 14.94 < 0.01

Table 4: Johansen tests for cointegrating rank

d (Local Whittle) d (GPH) Bias test
Bandwidth [T05] [1%6] 107 | [79°] [T°6] [T°7] | Statistic p-value

log(Temp+16) | 0.271 0.741 0.949 | 0.0213 0.475 0.639 2.89 0.002

log(CO2) 0.586 0.762 0.913 | 0.447 0.629 0.800 5.45 0

Table 5: Semiparametric estimates of the long memory parameter

by optimizing the Akaike model selection criterion. Of course, the null hypothesis in these tests
entails the condition that both series are I(1). Rejection of both the rank hypotheses implies
that the VAR has full rank, and hence that the variables exhibit reversion to a finite long-run
mean. The decisive rejection reinforces the conclusion that these variables ought to be treated as
stationary. The result of these preliminary looks at the data is to decisively reject a ‘nonstationary
with cointegration’ interpretation of the evidence.

If both the I(1) and I(0) hypotheses are rejected, which is one way to interpret the results of
Table 2, the data might possibly be characterized as I(d) for 0 < d < 1, where d is a parameter
measuring the rate of divergence of the spectral density at the origin. We might, under this
hypothesis, attempt to estimate d using a semiparametric estimator such as the Geweke-Porter
Hudak (1982) log-periodogram regression (GPH), or the ‘local Whittle’ maximum likelihood
procedure (Kunsch 1987, Robinson 1995). Estimates using these methods with alternative band-
widths are shown in Table 5. A conservative bandwidth of O(T%/?) was proposed by Geweke
and Porter-Hudak, whereas broader bandwidth choices have been shown to be optimal on an
MSE criterion by Hurvich et al. (1998). The ‘bias test’ is from Davidson and Sibbertsen (2009)
and is a variant on the Hausman test, comparing broad and narrow bandwith estimates of d.
This statistic is asymptotically standard normal under the null hypothesis of a pure fractionally
integrated process.

What is notable in the present case is how very sensitive these estimates are to both the
estimator and the bandwidth choice. This is a result that is predictable given the form of
the autocovariance functions on which they are based, which are plotted in Figure 5. A linear
representation of long-range dependence incorporating the fractional differencing operator would,
on this evidence, have great difficulty in providing a complete description of these data series.

4 Linear autoregressive analysis

Econometric testing methodologies are normally embodied in a parametric time series framework
and this almost always involves linear modelling. Granger non-causation hypotheses in stationary
data are typically tested as restrictions on the coefficients of a vector autoregression (VAR). In
nonstationary data, the nonstationarity is typically attributed to a unit autoregressive root, and
in this case the usual approach is to construct a reduced rank VAR, otherwise known as a vector
error correction model (VECM).

When applied to economic or financial data, the nature of the data is such that one of these
two approaches is found to cover most eventualities. In particular, economic data sets typically
appear quite compatible with the linear model paradigm. After allowing for factors such as



seasonal patterns, vector autoregressions, with or without unit roots, are found to model economic
time series quite successfully and parsimoniously. From a theoretical point of view, appeal may
be made to the Wold decomposition theorem (see e.g. Davidson 2000) which states that every
stationary process has a linear moving average representation with respect to a sequence of
uncorrelated disturbances. An autoregressive process of sufficiently high order can approximate
this representation arbitrarily closely. This result does not exclude the possibility of unexplained
dependence involving second or higher moments of the disturbances, but it does offer powerful
support for a linear representation of the conditional mean.

With this in mind, consider modelling the data in Figure 4. Under a stationarity assumption,
we should be able to represent this pattern by an autoregression of sufficiently high order. An
ideal situation would be able to model the climatic interactions by a simple bivariate system
in which one variable drives, or is driven by, the other. A finding of Granger non-causality
would.provide unambiguous evidence about these interactions.

However, the rejection of Granger noncausality would have a number of possible interpre-
tations. The usually accepted scenario is that the glacial cycle is the response of the observed
processes to some geophysical factors relating to changes in solar output and in the Earth’s orbit
about the sun. The so-called Milankovitch cycles, regular variations in the eccentricity, obliquity
and precession of the Earth’s orbit can be reconstructed using a public domain computer program
(see Paillard et al. 1996), and these can be included in the model as non-stochastic explanatory
variables. The series in question are plotted in Figure 6. Unobserved drivers, such as variations
in solar output, are modelled as nominally stochastic, although fixed cycles might be captured in
practice by nonstochastic difference equations, since it is not necssary to specify the distribution
of the associated shock processes. In practice, these these unobserved factors need to be proxied
by the observed data themselves, in the context of a bivariate VAR.

To show how this works, start with the complete system. Let A(L) (m x m) denote a finite-
order matrix polynomial in the lag operator, A(L) a m X p matrix polynomial, and u; a m-vector
of zero-mean random shocks. Letting

A(L)y, = A(L)dy + uy

describe the evolution of the m-vector of random processes y, with Ag = I,,, where d; (p x 1)
denotes known cycles or trends in addition to a fixed intercept, partition this system as

rutciibrecc | B R b il ol e )

where m = 2+m,, y, = (x}, 2})’, &, = (T, C;)’ (2 x 1) where (according to our chosen functional
form) T; = log(temperature +16) and C; = log(CO2), and z; (m, x 1) is the vector of unobserved
processes. Solving out z; yields the reduced bivariate system

B(L)z: = T(L)d; + v, (4.2)
where
B(L) = |A,.(L)|Azz(L) — Az (L)adjA,.(L)A(L) (4.3a)

%Tt is possible using the same software to compute series for imputed insolation at different latitudes. In this
version of the model we have not included variables of this type since they introduced excessive collinearity. It may
in any case be better to let the model determine how the orbital variations influence the target variables than to
introduce an extra layer of imputation.



Uy = ’Azz(L)|u$t - A;UZ(L)adJAzz(L)uzt (43C)

Consider first the case where A.,(L) = 0, such that z; does not Granger-cause z;, and
there are no feedbacks from observables to unobservables. In this case, notice that B(L) =
|A..(L)|Azz(L), and since |A..(L)| is a scalar polynomial, any zero restrictions on A, (L), such
as a triangular or diagonal structure, are shared by B(L). It should be diagonal if temperature
and COgq levels are unconnected, but we would expect at least an upper triangular structure if
C, drives T; through the greenhouse effect.

System (4.2) has a vector ARMA structure, noting that the right-hand side term in (4.3c) is
a sum of finite-order moving averages. As is well-known, a process so formed has a terminating
autocovariance sequence and hence a representation as a finite-order moving average of white
noise elements. In other words, there exists a vector of white noise elements €; = (e, e¢¢)’ such
that

Vs = O(L)Et (44)

To tie down the causality question more fully, we have to consider the role of the Milankovitch
variables and the unobservables, represented here by the shocks wu,;. If these drive both temper-
ature and COq, there is no need for a greenhouse effect hypothesis to account for the observed
co-movements of the variables. An alternative possibility is that these drive CO5 only, so that the
greenhouse hypothesis is needed to account for the subsequent changes in temperature. Consider
this latter scenario. It arises if the first rows of, respectively, A, (L) (2 x p) and A,,(L) (2 x m,)
are zero. Writing uy: = (upe, uct)’, the first element of vy is in this case |A,,(L)|ur:, whereas
ury does not enter into the second element of v;. It follows that (4.4) could be partitioned as

[ vT } _ [ |A..(L)| 0 ] [ Ut }
vt 0 Oco(L) | | ect
where ¢y is a white noise disturbance derived from u,; and wucy, and Occ(L) is the scalar lag

polynomial defined implicitly by the autocovariance structure of vc. Thus, we would be able to
write system (4.2) in VAR form as

B*(L)z; = T*(L)d; + & (4.5)

where B*(L) = @(L)"!B(L) and Y*(L) = @(L) ' T (L), and since @(L) is a diagonal matrix,
Granger non-causality restrictions on B(L) are preserved in B*(L).

It follows that if the chain of causation runs in one direction, from dt and z; to C; and
thus to T, this fact should be detectable by tests on the reduced VAR system. Temperature
would not Granger-cause COs. In the alternative case where both C; and T} are driven by the
unobservables, both rows of A,.(L) contain non-zero terms, hence vy, depends on u,; as well
as urt, and @ (L) is in general not diagonal. In this case Granger non-causality restrictions on
the VAR system won’t hold in general, regardless of the form of A, (L). There is of course the
further possibility that A.,(L) # 0, because temperature and CO2 themselves influence some
relevant unobservables, and in this worst case the restrictions of interest may well be unidentified.

We conclude that analysis of the reduced system has the potential to be informative, but
there is an asymmetry in respect of the conclusions obtainable from test outcomes. Granger non-
causality of CO2 by temperature in the VAR system (4.5) would be a strong finding, indicating
that the cycles in temperature could be driven by the greenhouse effect, following movements in
COz. Rejection of the hypothesis, on the other hand, while not contradicting the existence of a
greenhouse effect, could be due at least in part to the unobservables driving the temperature cycle
directly. We should need more information about the geophysical environment to be distinguish
between these alternatives. There is of course the possibility of modelling the moving average



structure of (4.4) and so estimate B(L) directly. However, since the orders of lags involved are
unknown and long, and the estimation of over-parameterised ARMA systems is tricky and subject
to identification problems, this would be an ambitious exercise. It is not attempted here.

5 The VAR Model

Let r denote the maximum lag length for the system, to be chosen. Since the cyclical variables d;
vary smoothly over a relatively long time scale, we simplify the setup by including only current
variables, replacing 1*(L) by a constant matrix 1. Next, rather than adopting the standard
VAR format we choose the VECM form which is written as

F(L)A:L‘lt = ngt + Hml,t—l + &¢. (51)

where I'y = I, I'j = —Z’,;:jﬂBj forj=1,...,r—1 and

I = [ T mre ] = —B*(1). (5.2)
TeTr Too

Note that the two parameterizations are equivalent, but the VECM setup has the benefit that
it allows straightforward testing of the Granger non-causality hypotheses which are embodied in
the restrictions mor = 0 and wpe = 0 respectively. Under the restriction mor = 0, for example,
the level of Ti, cannot affect the subsequent path of . This single restriction does not rule
out correlations between the changes of the two series, but such correlations cannot induce a
systematic relationship between the levels of the variables. If, equivalently, the sum of the off-
diagonal lag coefficients in the VAR form is zero, the response of the left-hand side variable to a
step change in the other is likewise zero in the long run. Hence, we can base our tests on these
coefficients alone. In the cases where the lag order exceeds 1 this is a weaker restriction than
that all the corresponding lag coefficients are jointly zero, but it is the relevant restriction for the
present purpose. If it is rejected, we may be sure, in a sufficiently large sample, that the stronger
restriction will likewise be rejected.

Another useful feature of this parameterization is that it is equally appropriate, whether the
data are stationary or feature stochastic trends. In the former case the matrix IT must have full
rank while in the latter case it has reduced rank, say s < 2. In this case it is customary to write
IT = o' where a and 3 are 2 x s matrices such that B'z; is a stationary process and 3 is the
matrix whose columns are the so-called cointegrating vectors. However, provided s = 2, which is
the conclusion from the Johansen (1981) tests for cointegrating rank described in Section 3, we
are able to assume that the elements of II are asymptotically normally distributed. Standard
asymptotic inference can be applied to tests of significance of these elements, provided the rank
of the matrix is invariant under null and alternative hypotheses.

A further feature of these data, which becomes clear on attempting to specify a system of
the form (5.1) for & = (T3, Cy), is that a linear structure cannot account for all the dependence
in the series. In particular, much larger shocks than usual appear to attend the periods of
glacial/interglacial transition. Since these episodes of high disturbance volatility occur in clusters,
a natural model to explain this pattern is generalized autoregressive conditional heteroscedasticity
or GARCH (Bollerslev 1987).

Letting E;_1e; = h; denote the conditional variance of the process €, the first-order multi-
variate GARCH equation takes the form

h)=w+ aef,1 + Bhi_1 (2 X 1) (53)
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AT, AC;

Tntercept ~0.683 (0.161)* | —0.009 (0.0054)
Eccentricity 0.374 (0.227) 0.059 (0.080)
Obliquity 0.035 (0.007)** | 0.0005 (0.002)
Precession —0.0233 (0.128) 0.047 (0.037)
T, —0.087 (0.032)** | 0.021 (0.009)*

Ci 0.107 (0.065) | —0.066 (0.019)**

See Table 7 for dynamic terms

VGARCH w 0.028 (0.0052)~ 0.015 (0.001)~

GARCH § 0.998 (0.036)** | 0.733 (0.093)**

GARCH 0.705 (0.061)** | 0.421 (0.118)**
R? (levels) 0.912 0.962
Jarque-Bera Stat. 30.24 195.6
Box-Pierce (17) 18.15 18.58
Box-Pierce,Sq (25) 18.56 25.15

Table 6: VAR(8) + Garch(1,1) model with Gaussian likelihood, equations

where o and (3 are 2 x 2 matrices. Letting h; denote the diagonal matrix in the elements hy,

the shock process is represented as e; = iLi /2 e; where by hypothesis e; ~ i.i.d.(0,€2) where €2 is
a fixed covariance matrix. Since the GARCH model requires the distribution of the shocks to be
symmetric, our decision to work with the logarithmically transformed variables is made on the
basis of ensuring symmetry to the best approximation. Note the so-called "ARMA in squares"
form of the GARCH model, having the representation

€ =w+ovi | +w — Bwy_y (5.4)
where d = a+ 8 and w; = E% — hy. This is a convenient form for estimation, and has the benefit
that the eigenvalues of & define the covariance stationarity conditions for the system which can
accordingly be monitored directly.  and 3 are the parameters we report.

The results of estimating this model by Gaussian quasi-maximum likelihood are shown in
Tables 6 and 8. Figures 7 and 8 show the residuals from the mean equation with two-standard
error bands, before and after normalization by 1/v/h;. In Table 6, standard errors are shown in
parentheses following the point estimates, with one and two stars indicating significance at the
5% and 1% levels respectively. These standard errors are computed using the robust formula for
the covariance matrix, that is to say, from the diagonal elements of the matrix V = Q 'AQ !
where A denotes the covariance matrix of the scores and @Q the Hessian matrix of the criterion
function. In other words, the information matrix equality A = —Q is not invoked, as befits the
case when Gaussianity of the disturbances is not being assumed.

The maximum lag length in the mean model, r = 8, has been chosen to maximize the Akaike
(1969) selection criterion.” Notice that the lag coefficients are estimated unrestrictedly even if
nominally insignificant. While truncating the maximum lag is a natural restriction, we take
the view that suppressing intermediate lag coefficients is best avoided unless there is an explicit
modelling justification, for example seasonal effects, otherwise such restrictions could distort the
lag structure more seriously that allowing it to be estimated inefficiently. However,the off-diagonal

"The Akaike and Schwarz selection criteria are here defined in the form "log-likelihood less penalty", hence
larger values point to preferred models. Note that some textbooks give a definition reversing the sign, as well as
normalizing by sample size.
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AT, AC,
AT,_; | —0.008 (0.059) | 0.045 (0.016)*
AC,_1 | 0.875 (0.164)* | 0.356 (0.060)**
AT,y | —0.117 (0.054) | 0.035 (0.014)**
ACy_5 | 0.095 (0.141) | —0.140 (0.049)**
AT, 3 | —0.026 (0.054) | 0.034 (0.015)*
ACy_3 | —0.117 (0.136) | —0.108 (0.046)*
AT, 4 | —0.050 (0.046) | 0.027 (0.013)
AC,_4 | 0.060 (0.121) | —0.086 (0.041)*
AT, 5 | —0.055 (0.048) | 0.010 (0.011)*
AC,_5 | 0.104 (0.131) | 0.032 (0.037)
AT, ¢ | 0.065 (0.052) | 0.007 (0.013)
ACi_g | —0.059 (0.128) | 0.002 (0.037)
AT, 7 | —0.026 (0.052) | —0.0018 (0.013)
ACy_7 | 0.031 (0.114) | 0.007 (0.041)
AT, g | —0.014 (0.047) | —0.006 (0.014)
AC,_g | 0.110 (0.101) | 0.009 (0.040)

Table 7: VAR(8) + Garch(1,1) model with Gaussian likelihood, dynamic terms

Log-likelihood: 3747.3
Akaike Criterion: 3696.7
Schwarz Criterion 3577.27
Contemporaneous Correlation 0.464
CM Autocorrelation Test (24): 13.64
CM Neglected ARCH Test (24): | 28.76
CM Functional Form Test (4): 9.75*

Table 8: Var(8) + GARCH(1,1) model with Gaussian likelihood, system statistics
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AT, ACYy
Intercept —0.663 (0.139)** 0.021 (0.04)
Eccentricity 0.291 (0.220) 0.0 (0.071)
Obliquity 0.039(0.006)** | —0.001 (0.002)
Precession —0.266 (0.118)* | 0.0402 (0.032)
Ti—1 —0.119 (0.029)** | 0.024 (0.007)**
Ci1 0.156 (0.060)** | —0.067 (0.015)**
See Table 10 for dynamic terms
VGARCH w 0.027 (0.0041) 0.016 (0.001)
GARCH § 0.955 (0.030) | 0.758 (0.071)**
GARCH p 0.698 (0.056)** | 0.475 (0.094)**
R? (levels) 0.912 0.962
Jarque-Bera Stat. 36.01 473.4
Box-Pierce (17) 18.81 18.27
Box-Pierce,Sq (25) 19.73 25.19

Table 9: VAR(8) + Garch(1,1) Model with Student t likelihood, equations

elements of § and B in (5.4) have been fixed at zero, due to strong indications of an identification
problem.%.

Table 6 included diagnostics for the individual equations, including R2s (computed for the
variables in levels, not differences), the Jarque-Bera (1980) test for residual Gaussianity (asymp-
totically chi-squared with two degrees of freedom under the null hypothesis) and also Box-Pierce
(1970) tests for residual autocorrelation in levels and squares. Table 8 contains statistics com-
puted for the model as a whole, including the contemporaneous correlation between the normal-
ized residuals and diagnostic conditional moment tests, which on the null hypothesis of correct
specification are asymptotically chi-squared with the degrees of freedom shown. The autocor-
relation and neglected ARCH tests are based on the covariances between residuals and squared
residuals, respectively, and their respective lags from both equations up to sixth order. The func-
tional form test, which leads to a rejection at the 5% level, is based on the correlation between
residuals and the squared fitted values for each equation. (See Newey (1985) and Tauchen (1985),
and also Davidson (2000) for background on conditional moment tests.)

A noteworthy feature of these estimates is that the residuals appear distinctly heavy-tailed,
as indicated by both the residual plots. This fact is also reflected by magnitudes of the Jarque-
Bera test statistics, particularly in the case of CO5. This finding suggests using the Student-¢
distribution to construct the likelihood function, with the degrees of freedom to be estimated
as an additional parameter. The distribution is symmetric and the Gaussian enters as a special
case in this set-up, but otherwise the form of the density function limits the influence of outlying
data points in determining the fit. The available algorithm does not allow the degrees of freedom
to differ between variables, so both of these estimation options represent a compromise. The
Gaussian estimator is known to be consistent and asymptotically normally distributed under the
usual regularity conditions, subject only to existence of at least second moments. The Student ¢
estimator does not share this robustness property, and Newey and Steigerwald (1997) show that
bias is possible in GARCH models in cases where the true shock distribution is asymmetric. In
the event, there is no evidence of asymmetry and this second set of estimates, shown in Tables

8Fitting the off-diagonal elements of § and B one at a time yielded small and insignificant values. Attempting
to fit both at once resulted in a failure of the search algorithm, with the positivity restrictions on the h; sequence
apparently violated so that the likelihood could not be computed.
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AT, AC,
AT,—, | —0.171 (0.058) | 0.046 (0.014)*
ACy_y | 0.957 (0.158)* | 0.366 (0.052)**
AT,_5 | —0.1218 (0.051) | 0.031 (0.013)**
ACy_5 | 0.134 (0.140) | —0.117 (0.046)**
AT,_5 | —0.050 (0.050) | 0.030 (0.014)
ACy_s | —0.066 (0.125 | —0.080 (0.043)*
AT,_; | —0.041 (0.044) | 0.023 (0.012)
ACy_4 | 0.045 (0.119) | —0.080 (0.038)*
AT,_5 | —0.058 (0.046) | 0.011 (0.010)
ACy_5 | 0.151 (0.121) 0.035 (0.036)
AT,_¢ | 0.048 (0.048) 0.007 (0.011)
ACy_¢ | —0.027 (0.120) | 0.011 (0.036)
AT,_7 | —0.045 (0.119) | —0.012 (0.010)
ACy_7 | 0.073(0.116) | —0.011 (0.035)
AT,_s | —0.017 (0.044) | —0.004 (0.010)
ACy_g | 0.097 (0.095) | 0.0016 (0.032)

Table 10: VAR(8) + Garch(1,1) model with Student t likelihood, dynamic terms

Log-likelihood: 3769.2
Akaike Criterion: 3717.1
Schwarz Criterion 3595.75
Contemporaneous Correlation 0.468
V/Student ¢ degrees of freedom 3.556

(0.313)
CM Autocorrelation Test (24): 20.58
CM Neglected ARCH Test (24): 22.68
CM Functional Form Test (4): 9.032

Table 11: Var(8) + GARCH(1,1) model with Student t likelihood, system statistics
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9 and 11 (the standard errors are again computed by the robust formula) show at most minor
differences from the Gaussian case.

6 The Markov-Switching Model

In the last section we modelled the data using a VAR structure to represent the conditional mean.
This is the conventional modelling approach, but the autoregressive structure has to work very
hard here to reproduce the cyclical pattern of the data. By hypothesis we have assumed that
the unobserved process z; in (4.1) is capable of generating such a pattern through purely linear
interactions of uncorrelated shocks. By the Wold theorem this should be possible, accepting
the hypothesis of stationarity, but the autocorrelation pattern of the data suggests a high order
process, which is difficult to estimate in all but the longest realizations. Although optimizing the
Akaike criterion in the available sample, the chosen lag length is almost certainly too short to
capture such a pattern with accuracy.

It is therefore natural to consider a nonlinear modelling framework. Suppose that the glacial
and interglacial periods can be thought of as the result of changes in geophysical conditions
under which different dynamic interactions prevail. The stochastic mechanism that induces these
shifts is unobserved, but we can deduce its key properties from the observed processes. The
simplest mechanism that we can propose is a fixed probability of switching states conditional on
the current state, the so-called Markov switching model. Since the original proposal by Hamilton
(1989), Markov-switching has become a popular device in econometrics to capture the transitions
between (for example) boom to recession episodes in the macro-economy.

Our second model therefore proposes different VAR-GARCH structures for the glacial and
interglacial periods, although the VAR component is now much simplified, entailing dependence
on just two lag terms. Otherwise, the functional forms in each regime follow equations (5.1)
and (5.4), with the parameters allowed to differ in the glacial and interglacial periods as these
are distinguished by the switching algorithm. It is not possible to infer with certainly that one
or the other ‘regime’ prevails at a given date. In principle, the contributions to the likelihood
function for each observation are the alternative probability densities weighted by unobserved
indicators, taking the values one or zero depending which ‘regime’ currently prevails. In an
application of the EM algorithm (Dempster, Laird and Rubin 1977), the indicators are replaced
at each optimization step by their conditional means, the so-called filter probabilities, so that
the likelihood contributions are constructed as a probability-weighted average of regime densities.
The sum of (the logarithms of) these terms is maximized with respect to the model parameters.
The filter probabilities are constrained to evolve according to the Markov updating rule, and the
fixed transition probabilities are additional parameters that need to be estimated.

The Markov switching model is clearly a simplified version of reality just as is the linear
autoregression, but the simplification is of a different form because the hidden mechanism takes
the form of a discrete switch rather than a continuous, linear adjustment to a succession of shocks.
The estimates of the Markov-switching model, which is fitted with Student ¢ conditional densities
(whose degress of freedom parameter does not switch), are shown in Tables 12, 13 and 14. Figures
9 and 10 show, respectively, the estimated filter probabilities of the interglacial regime, and their
smoothed counterparts, the latter being computed using the full sample rather than just the data
preceding the dates in question; see Kim andNelson (1999) for details.

The temperature equation appears to exhibit some residual autocorrelation, although it is im-
portant to bear in mind that the ‘residuals’ in these models are computed as the filter-probability
weighted averages of the residuals computed for each regime. It is not clear what the properties
of the usual tests will be in these cases. Nonetheless, the potential problem is alleviated by com-
puting standard errors and tests using a heteroscedasticity and autocorrelation consistent (HAC)
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AT,

AC;

Regime 1 Intercept —0.525 (0.159) -0.065 (0.017)
(Inter-glacial) | Eccentricity | —0.038 (0.326) —0.066 (0.110)
Obliquity | 0.029 (0.006)** | 0.0034 (0.001)**
Precession —0.065 (0.100) 0.038 (0.032)
T, 1 —0.132 (0.049)** |  0.011 (0.013)
Ci1 0.188 (0.084)* | —0.042 (0.023)*
ATy 0.359 (0.175)* 0.166 (0.080)*
AC;_, 0.398 (0.195)* |  0.152 (0.090)
VGARCH w | 0.026 (0.004)~ 0.0085 (0.002)~
GARCH § | 0.848 (0.112)* | 0.895 (0.084)*
GARCH B | 0.748 (0.244)* | 0.564 (0.163)*
Regime 2 Intercept 0.464 (0.227)* 0.042 (0.037)
(Glacial) Eccentricity | 1.500 (0.458)** 0.042 (0.135)
Obliquity | 0.040 (0.009)** | —0.0017 (0.0016)
Precession | —0.902 (0.230)** | —0.036 (0.071)
T, 1 —0.421 (0.057)** | 0.039 (0.014)**
Ci 0.552 (0.100)** | —0.117 (0.030)**
AT, —0.054 (0.054) | —0.0014 (0.011)
AC;_, 1.020 (0.259) | 0.443 (0.064)**
VGARCH w | 0.035 (0.025)~ 0.017 (0.002)~
GARCH § | 0.975 (0.045)* | 0.511 (0.154)**
GARCH 8 | 0.851 (0.065)** | 0.302 (0.150)*
R? (levels) 0.924 0.963
Jarque-Bera. 11.26** 170.7**
Box-Pierce (24) 32.66 26.85
Box-Pierce, Sq (25) 21.11 22.34

7 Tests of Granger Causality

Table 12: Markov Switching VAR(2) + Garch(1,1) model with Student t likelihood, equations

estimate of the covariance matrix. The Parzen kernel is used with a bandwidth of three, chosen
by the Newey and West (1994) plug-in procedure.

The focus of attention in these results is the coefficients of Cy_1 in the AT; equation and T;_1 in
the AC} equation. If these are significantly positive, this indicates influence of the levels of one
variable on the future path of the other. Nonzero coefficients of the lagged differenced variables
indicate the existence of temporary influences, but not permanent ones. Given the sympathetic
behaviour of the two series, we should expect that at least one series “drives” the other, and

P(:|Interglacial)

P(-|Glacial)

P(Interglaciall-)
P(Glaciall-)

0.9642
0.038

0.0341
0.9659
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Table 13: Markov Switching VAR(2) + Garch(1,1) model with Student t likelihood, estimated
transition probabilities




Log-likelihood: 3853.0

Akaike Criterion: 3804.0
Schwarz Criterion 3689.3
Contemporaneous Correlation 0.484
V/Student ¢ degrees of freedom 4.416

(0.825)

CM Autocorrelation Test, (24): | 42.6**
CM Neglected ARCH Test, (24): | 13.81
CM Functional Form Test (4): 1.056

Table 14: Var(8) + GARCH(1,1) Model with Student t likelihood, system statistics

possibly each drives the other. The most interesting outcome would be the case where one series
does not drive the other, in other words, Granger non-causality of one series with respect to the
other.

Consider first the VAR(8) model, and in particular Table 9, although the Gaussian MLE
yields essentially similar results. Using the usual asymptotic test criteria, it appears that non-
causality is rejected in both directions, although at the 1% significance level in the case of COq
by temperature, while only at the 5% level in the case of temperature by COs. Indeed, the latter
result is rather close to the borderline for non-rejection at 5%. However, such results are always
problematic because of the uncertainty associated with asymptotic criteria in the face of possi-
ble model mis-specification. Therefore, we have attempted to provide supplementary evidence
on these findings in the form of bootstrapped critical values. The method adopted was to use
the fitted models to generate artificial series using randomly resampled residuals to provide the
shock processes and the actual pre-sample observations to set initial conditions. The two equa-
tion residuals are resampled in pairs to preserve the contemporaneous correlations. Then, the
model was estimated from the bootstrapped data set. This procedure was repeated 3000 times,
allowing the distributions of the centred ¢ statistics to be tabulated. These are the distributions
of the statistics having the form (7;; — 7;;)/s.e.(7];) where 7, denotes the estimate from the
bootstrap sample of an off-diagonal element of the IT matrix in (5.2), and 7;; is the ‘pseudo-true’
parameter represented by the estimate from the original sample. These provide the bootstrap
estimates of the null distribution of the one-tailed t test, with rejection in the range of positive
values. The relevant quantiles from these distributions are shown in Table 15 where the column
headings indicate upper tail areas. The usual asymptotic quantiles from the standard normal
distribution are also shown for comparison.

In addition to bootstrapping the VAR(8) model, a second set of experiments used the Markov-
switching model to generate the bootstrap data. This option allows us to check on the effect on
the test statistics of fitting a misspecified model, in this case, the VAR(8) model where the true
data generation process (DGP) is assumed to be the Markov switching case. Both of these sets
of results are reported in Table 15. It is apparent that, assuming the VAR model is correct, the
bootstrap returns critical values that are close to the asymptotic ones. Assuming the true model
is Markov-switching, the estimated quantiles turn out to be somewhat smaller, suggesting that
asymptotic tests could tend to over-reject a true null hypothesis. However, none of these cases
leads to different conclusions from the conventional test procedure. Arguably, this allows us to
be reasonably confident that the findings with the VAR(8) model are robust.

Next, consider the Markov switching model. Here, we have the opportunity to test causality
in each of the regimes, and so determine whether behaviour of the series is different in the glacial
and interglacial periods. Indeed, this proves to be the case. In the interglacial regime, both
effects are insignificant and of a similar magnitude. In the glacial regime, on the other hand,
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t statistic DGP 10% 5% 1%

CO2(—1) in Temp equation 2.60 VAR(8) 1.23 1.59  2.25*
Markov Sw. | 2.16 2.60* 3.45

Temp(—1) in CO2 equation 3.342 VAR(8) 1.54 1.84 2.51*
Markov Sw. | 1.53 1.83 2.60%

N(0,1) 128 164 232

Table 15: Bootstrap critical values for causality tests in the VAR(8) model

Regime | t statistic DGP 10% 5% 1%

CO2(-1) in Interglacial 2.23 Markov Sw. | 1.00 1.36 2.13
Temp equation VAR(8) 0.07 0.68 1.61
Glacial 5.52 Markov Sw. | 0.36 0.67 1.42*

VAR(S) | 034 096  1.90*

Temp(—1) in Interglacial 0.846 Markov Sw. | 1.06 1.57 2.33
CO2 equation VAR(8) 2.43 3.45 5.38
Glacial 2.785 Markov Sw. | 1.09 1.49 2.49*

VARS) | 1.62 277 511

N(0,1) 128 164  2.32

Table 16: Bootstrap critical values for causality tests in the Markov switching model

both noncausality hypotheses are rejected at the 5% level, although in this case the effect of COq
on temperature appears larger. Refer to Figure 9 to see which regime is estimated to predominate
in each historical period.

Bootstrap critical values were also computed for this model and reported in Table 16, al-
though in this case a modified version of the fitted model has been used in which the transition
probabilities are fixed at their sample values, rather than being fitted freely along with the other
parameters. Without such a strategy, there is quite a large risk of convergence failure with these
models, due to the often poorly conditioned form of the likelihood contours. Even with this op-
tion in place, 600 out of the 3000 replications resulted in convergence failure, so that the reported
results are based on the 2400 successful cases.

Using the Markov-switching model as DGP, the simulation results prove to depend rather crit-
ically on the regime. The interglacial estimates are distributed reasonably close to the asymptotic
case, whereas the distributions for the temperature equation in the glacial period are notably dif-
ferent, and point to the possibility of under-rejection using asymptotic criteria. Evidently, the
data are somewhat less informative about temperature in the glacial periods. Nonetheless, the
test outcomes are the same as from the asymptotic criteria, suggesting that these findings are
reasonably robust.

The table also shows the results of estimating the misspecified Markov-switching model, where
the generated data are obtained from the VAR(8). Here there is a more serious problem, due
to the underidentification of regime-dependent parameters when there is in fact just a single
regime. The extreme distortion of the test distributions is notable, interestingly affecting the
two equations in rather different fashion. These results might suggest that the Markov switching
model, in spite of giving a better and more parsimonious fit to the data on conventional criteria,
may offer a greater hazard to valid inference if it is misspecified, and the test results should be
treated with relatively more caution than in the linear case.
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8 Concluding Remarks

This paper has applied econometric techniques to the problem of testing directions of causation
from historical data on temperature and atmospheric COs derived from ice-core measurements.
There are a number of issues with the study of data of this type, not least the problem of
irregularly spaced and non-coincident observations. We have concluded that 1000 years is the
shortest acceptable interval over which to create interpolated observations, while recognising that
there are a number of episodes over which the COy measurements enter two or more consecutive
data points. It is inevitable that this data feature will induce some artefactual autocorrelation
in the series, and may distort the short-run dynamics as estimated in these models. In Tables 7
and 10 we note that the change in COs lagged one period takes a relatively large coefficient.in
both equations. This could represent an important short-run effect, but might also be simply an
artefact due to sparse data. On the other hand, going to 1500 or 2000 year intervals would run
the risk of aliasing the interactions in which we are primarily interested. Hopefully, the modelled
dynamics are able to account for such data artefacts as well as the historical interactions.

We have constructed two alternative models that both fit the data reasonably well while
offering different approximations to the actual dynamic structure, each with its own limitations.
The general conclusion we draw, taking the results together, is that there exists a two-way
interaction, and the glacial-interglacial cycles exhibited by both series are clearly driven by a
common underlying geophysical cause. Contrasting the two sets of estimates obtained, we should
note that Markov-switching systems contain parameters whose identification depends on the
existence of clearly defined regime differences. This can make them numerically challenging
to estimate and there is typically a good deal of specification uncertainty. The linear-in-mean
specification is cruder and more obviously descriptive, but it is also more numerically robust and
our bootstrap calculations indicate that the tests of causality could be more or less correctly sized
even when the model is wrong. In other words, the linear form can approximate the switching
process adequately.from the point of view of inference on the restrictions of interest. This finding
increases our confidence in the conclusions.

However, we should conclude with a cautionary remark regarding interpretation of the find-
ings. For the reasons discussed in Section 4, the rejection of Granger non-causality means that
without additional information about the climate system, we are not able to conclude very much
about the direct interactions of our observable variables. Consider, for example, using the equa-
tions to simulate the effects of a shock to COq levels. This would certainly show a response
by temperature, just as a shock to temperature would show a response by CO;. However, our
inability to impose ceteris paribus conditions means that such an exercise could tell us little
about the outcome of a controlled experiment, such as the injection of anthopogenic CO2 into
the atmosphere.
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Figure 1: Temperature and CO2 series plotted at 1000 year intervals by linear interpolation.
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Figure 2: Scatter plot of deuterium measurements vs. imputed temperatures. (Darkest points
are the most recent, lightest are earliest.)
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Figure 4: Logarithmically transformed series
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Figure 6: Orbital variables
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Figure 8: Variance-adjusted residuals from the VAR(8) model, Table 6

26

0 | — ResdsforlogCTenp + 16
| —— 1SE Bands
03
02
01
0
01
02
03
04
05 : : : : : : : :
700 600 500 400 300 200 100 0
015 ,
—— Residuals for log(C0)
—— 2SE Bands
0.1
0.05 ) ’M | ,
“ ' W»Mw HW i
el A
01
015 : : : : : : : :
700 600 300 400 300 200 100 0
Figure 7: Residuals from the VAR(8) Model
4 . . .
—— Variance-Adjusted Residuals for log(Temp + 16)
31— 2SEBands l ‘
3 | | | ‘ |
1
0
-1
'2 T T ‘ | |
_3 |
4
700 600 500 400 300 200 100 0
6
| — Varoce-Adistd R g C02)
—— 2SE Bands
4
3 |
2 | ‘ |
1
0
1
2 ! H
3
700 600 500 400 300 200 100 0



700 600 500 400 300 200 100 0

Figure 9: The filter probabilities of Regime 1 (inter-glacial).
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Figure 10: Smoothed probabilities of Regime 1 (inter-glacial)
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