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Introduction

This supplement contains tables and charts associated with the results in Davidson et al (2015),
and needs to be read in conjunction with that article.

1 The Data

The EPICA data sets consist of paired magnitudes and imputed dates, which are irregularly
spaced. Values are imputed to 1 kyr intervals by linear interpolation; in other words, by joining
the (recorded value, recorded date) pairs by straight lines and reading off the values of this
continuous record at the chosen time intervals. Temperature is recorded in degrees Celsius, CO9
and CHy concentrations are expressed in parts per 10%. The ice volume series has also been
interpolated linearly, but this effects only a few of the early observations at 2kyr intervals. The
proxy is the percentage of the 620 isotope of oxygen in benthic core samples. Figure 1 shows
the resulting series, before logarithmic transformation, and Table 1 shows summary statistics for
these series. Figure 2 shows histograms and kernel densities for the raw series of Figure 1 of this
supplement (top row) and the logarithmically transformed series in Figure 1 of the paper (second
row).

Figure 3 shows the autocorrelations of the logarithmic series. The partial sums of these
sequences are plotted in Figure 4, and the partial sums of the absolute values in Figure 5. The
contrast between these sequences, the absolute sums diverging while the signed sums diminish,
may be indicative of the failure of the HML test in Appendix A of the paper to yield results
matching the other tests of the ‘I(0)’ hypothesis. Another view of these series properties is
provided by Figure 6 which shows the smoothed periodograms of the series plotted on the interval
[0, 77]. While these estimated spectral densities are large close to the origin, there is clearly no
evidence of divergence at the origin.

Temp. CO, CHy Ice
Maximum 3.76 294 7.89 5.08
Minimum | —10.25 1.72 346 3.10
Mean —5.29 223 495 4.17
Std. Dev. 2.90 0.25 081 0.44
Skewness 0.71 0.37 0.55 —0.23
Kurtosis 2.90 232 273 234

Table 1: Summary statistics



Temp. COq CH,4 Ice
SAR 0.0893 0.0357 0.0638 0.0612
Sample initial value Xg | 1.998 0.642 1.442 1.543
b = sample maximum 2.984 1.082 2.065 1.625
b = sample minimum 1.748 0.546 1.242 1.131
c 0.417  0.613  0.345  0.047
—0.106 —-0.135 —-0.111 —-0.238
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Table 2: Simulation parameters for unit root tests subject to barriers

2 Tests for a Bounded Random Walk

Cavaliere and Xu (2014) derive the limit distribution of the ADF statistic under the hypothesis
of a bounded random walk process, and show that this depends on a regulated Brownian motion
B¢ where ¢ and ¢ are nuisance parameters. They show that ¢ and ¢ can be consistently estimated
by the formulae

TY2(b— Xo)/sar
T~Y2(b - Xo)/sar
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where T is sample size, b and b are the actual bounds observed, X is the initial value of the
sequence and s4p denotes the autoregressive estimator of the long-run variance of the differences
AXy, defined as s? = Z;’;f oo Cov(AX;, AX;_;). In a process with autoregressive representation
b(L)AX; = &; under the null hypothesis, where ¢; is uncorrelated with variance o2, it can be
shown that s* = 02 /b(1)?, and s% ;, estimates this quantity via the ADF fitted autoregression. The
test is implemented by simulating the augmented Dickey-Fuller statistic with artificial bounded
random walks, with bounds ¢ and € and independent Gaussian shocks ef having variance 1/7. In

our implementation, the bounds are imposed in the simulations by the data generating equation
Xf=2+ (X7, +e -0 +2-0)

where (.)" and (.)~ denote respectively the positive and negative parts of their arguments. The
statistics used in the construction of the test tabulations in Table 2 of the paper, estimated by
5000 Monte Carlo replications of the ADF statistics, are shown in Table 2. The artificial samples
were of size T' = 798 to match the length of the observed series, and the number of lagged terms
in the statistics match those reported in Table 8 of the paper.

3 VECM Model Results

The model, represented by equation (3) of the paper with the addition of intercepts, is estimated
by Gaussian maximum likelihood. The estimates of the matrices E and II are given as Tables
5 and 7 of the paper. The estimates of the coefficients of D(L) and C(L) and the GARCH
coefficients \/w, § and 3 are in Table 3 of this supplement. The star decorations in these and
subsequent tables denote statistical significance according to asymptotically valid criteria, at the
10% (*), 5% (**) and 1% (***) levels respectively. The reported standard errors are computed
from the robust estimator of the covariance matrix having the form V = Q 'PQ ! where P
denotes the covariance matrix of the scores, and @ the Hessian matrix of the criterion function.
The information matrix equality P = —Q is therefore not invoked, as befits the case when
Gaussianity of the disturbances is not assumed. This table shows that there are important



ATemp ACO9 ACH4 Alce

Intercept 1.051 0.182 0.886 —0.473*
(0.664) (0.202) (0.0.577) (0.260)

ARI1(ATemp) 0.0037 0.001 0.067* —0.013
(0.052) (0.014) (0.038) (0.014)

ARI(ACO2) 0.897*** 0.358*** 0.191 —0.068
(0.140) (0.054) (0.111) (0.045)
AR1(ACHy) —0.024 0.026* 0.014 0.001
(0.041) (0.013) (0.044) (0.014)

ARI1(Alce) —0.103 —0.071** 0.124 —0.037
(0.103) (0.030) (0.087) (0.042)

AR2(ATemp) —0.104** —0.0047  0.073** 0.013
(0.044) (0,111) (0.031) (0.013)

AR2(ACO,) 0.075 —0.185***  (0.279*** 0.025
(0.121) (0.045) (0.106) (0.046)

AR2(ACHy) —0.048 —0.0003 0.036 0.010
(0.031) (0.010) (0.032) (0.011)
AR2(Alce) —0.074 —0.051 0.025 0.051
(0.096) (0.036) (0.086) (0.047)

AEccentricity —4.795 —11.54 1.090 —20.03
(27.35) (9.39) (25.23) (12.43)

AEccentricity(—1) 25.37 17.56* —4.83 14.69
(28.18) (10.06) (25.34) (12.66)

AODbliquity —3.219*** —0.373 —1.584 1.192**
(1.233) (0.375) (1.062) (0.469)

AObliquity(—1) 3.246** 0.389 1.646 —1.21**
(1.239) (0.375) (1.062) (0.469)

APrecession —15.46** —6.07** 6.347 3.054
(7.20) (2.38) (6.618) (2.417)

APrecession(—1) 14.88** 6.18* —-7.606  —2.729
(7.287) (2.39) (6.178) (2.421)

GARCH /w 0.028 0.013 0.042 0.019
(0.004) (0.001) (0.004) (0.002)

GARCH § 0.993*** 0.824*** 0.508**  0.663 ***
(0.035) (0.092) (0.208) (0.1775)

GARCH g 0.685*** 0.345%** 0.046 0.480**
(0.065) (0.091) (0.191) (0.240)

Table 3: Estimates of C(L) and D (L) elements and GARCH parameters (robust standard errors
in parentheses) .

contributions to each equation from the current and lagged changes in the orbital variables
although these effects appear to be largely off-setting; in other words, it is the second differences
of the cycles that appear to matter most.

Figures 7 and 8 show the residuals from the mean equations with two-standard error bands,
respectively before, and after, normalization by 1/y/h;. While symmetrically distributed, the
normalized residuals appear distinctly heavy-tailed in Figure 8. Figure 9 shows the series defined
by the deviations from equation 4 of the paper, expressed in centred (mean deviation) form in
view of the the inclusion of unrestricted intercepts in the dynamic relations. These curves are
dominated by the orbital cycles but not by the glacial cycles, showing that the steady-state
relation between x; and d; does succeed broadly in tracking the ice ages, even though there are
substantial higher frequency oscillations that need to be accounted for by the system dynamics.

Table 4 shows the optimized value of the log-likelihood and system diagnostics, specifically
the Lagrange multiplier and conditional moment test statistics for system-wide autocorrelation,
neglected ARCH effects, and nonlinearity. These alternative test principles are based in the
first case on the scores of the log-likelihood function in the extended model, and in the second



Log-likelihood: 8392.92

System tests: Lagrange multiplier ~Conditional Moment
Autocorrelation (32): 39.51 14.23
Neglected ARCH (32): 41.39 37.23
Functional Form (16): 21.44 34.50***
Functional Form (32): 53.81*** 66.73***

Table 4: System diagnostics. See text for details

Temp COq CHy4 Ice
R? (levels) 0.915 0.962 0.882 0.960
Jarque-Bera Stat. 14.55"* 108.3*** 84.79*** 52.82***
Box-Pierce (23) 23.62 21.82 17.55 13.12

McLeod-Li (25) 17.08 21.76 39.04 20.10

Table 5: Equation Diagnostics

case on the covariances of the residuals, or squared residuals, with the test variables. For the
theory underlying these tests, see for example Davidson (2000) and references therein. In the
present case the test variables are, respectively, the once and twice lagged residuals in the mean
equations, the once and twice lagged squared residuals in the GARCH volatility equation and
the squares, and squares and cubes, of the fitted model in the mean equations. The latter tests
are generalizations of the RESET test (Ramsey 1969). The full set of test variables is included
in each equation, resulting in the chi-squared degrees of freedom shown in parentheses.

The rejections in the functional form tests show the limitations of the linearization adopted,
but it ought to be emphasized that with a large sample, where the tests have plenty of power, this
type of result is not uncommon in econometric applications. Indeed, it must occur with probabil-
ity one as the sample tends to infinity, unless the equations represent the actual data generation
process in every respect. What matters most, from the point of view of making valid inferences,
is that the equation residuals appear both uncorrelated and conditionally homoscedastic.

Table 5 contains equation-specific statistics. These include the R%s (computed for levels, not
differences) and univariate tests of autocorrelation (Box and Pierce 1970) and neglected ARCH
(McLeod and Li, 1983) for the orders of lag shown in parentheses, These tests are designed for
univariate models and their properties in a VAR context are not formally established, but they
could indicate problems with particular equations, were these present. The Jarque-Bera (1980)
test is for residual normality, which is rejected decisively. This finding indicates that our estimator
is not true maximum likelihood but, as noted above, our inference procedures are designed to
take account of this fact.

Table 6 shows the residual contemporaneous correlations, with star codes denoting rejections
of the zero hypothesis in all but one case. Estimates of the correlations are mapped into the inter-
val [—1, 1] from the real line by the transformation x/(1+ |z|) where x is estimated unrestrictedly.
The test outcomes reported are for the result of ¢-tests of the null hypotheses = = 0.
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Temp COq CHy Ice
Temp 1
COz | 0.455%** 1
CHy | —0.125"* —0.129*** 1
Ice | —0.170"** —0.161"* —0.018 1

Table 6: Residual correlation matrix
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Figure 1: Recorded data, before transformation.
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Figure 2: Series distributions
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Autocorrelation functions of the logarithmic series
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5: Cumulated absolute values of the autocorrelations.
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Figure 6: Smoothed periodograms
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Figure 7: The unadjusted residuals, showing two-standard error bands estimated by the GARCH
volatility model.
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Figure 8: Residuals adjusted to unit variance
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Figure 9: Deviations from steady-state relations.



