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Abstract

A test is derived of the hypothesis that the cointegrating space of a collection of I(1) variables contains a vector subject to
a set of linear restrictions. Applications to the problem of testing for irreducible cointegrating relations, and also structural
hypotheses, are discussed.  1998 Elsevier Science S.A.
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1. Introduction

This article derives a test of restrictions on the cointegrating vectors estimated by the Johansen
(1988), (1991) maximum likelihood estimator. Let the DGP for the I(1) process x (m 3 1) be writtent

as

k21

Dx 5OGDx 1 ab9x 1 u , (1.1)t j t2j t2k t
j51

for t 5 1, . . . ,T, where a and b are m 3 s matrices of rank s (assumed known). Recall that in
ˆJohansen’s procedure b, the MLE of b, is calculated as the set of eigenvectors corresponding to the s

219largest eigenvalues of S S S with respect to S , where in the usual notation, S , S and S are0k 00 0k kk 00 kk 0k

the moment matrices formed from the residuals from regressing Dx and x , respectively, onto thet t2k
21ˆ ˆ ˆ ˆ ˆ ˆ ˆ9Dx . Accordingly, b is normalised to satisfy b9S b 5 I and b9S S S b 5 D, where D is thet2j kk s 0k 00 0k

diagonal matrix formed from the s largest eigenvalues. As is well known, these vectors span the
cointegrating space, but have no interpretation as structural economic parameters.

Johansen and Juselius (1990, Section 5.2) show how to construct Wald tests for hypotheses of the
form Hb 5 0, where H is a known p 3 m matrix of constants, using the result shown in Johansen

ˆ(1991) that T(b 2 b ) is locally asymptotically mixed normal (LAMN) under standard assumptions.
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While this type of hypothesis is invariant to the normalisation since all the columns of b satisfy the
same restrictions under the null, it is not widely applicable. By contrast, the hypothesis we consider
here is that the cointegrating space contains a vector which satisfies restrictions H. This may be
expressed as

H : 'a(s 3 1) such that Hba 5 0. (1.2)0

The chief motivation of this approach is to give direct tests of structural hypotheses on the
cointegrating relationships of the model. As a byproduct, estimates of identified structural parameters

ˆcan be solved from b. The test is described in Section 2, and the applications to structural modelling
are briefly outlined in Section 3.

2. The test

Assume p $ s, since otherwise H is trivially true. Further, assume that the vector a specified in0

(1.2) is unique up to a normalisation. (Both of these assumptions will be motivated in Section 3.)
Then, under H the matrix b9H9Hb (s 3 s) has rank of s 2 1, its smallest eigenvalue is 0, and a0

equals the eigenvector corresponding to this simple eigenvalue, up to a normalisation. On the other
hand, if H is false the minimal eigenvalue is positive. H can therefore be restated as Hba 5 0 where0 0

a is the eigenvector corresponding to the smallest eigenvalue of b9H9Hb. The vector a so defined is a
ˆcontinuous function of b, differentiable to all orders. If a denotes the eigenvector corresponding to the

ˆ ˆ ˆˆsmallest eigenvalue of b9H9Hb, then a is consistent for a. Since T(b 2 b ) 5 O (1), we may write,p

when H is true0

ˆ ˆˆ ˆTHba 5 TH(b 2 b )a 1 THb(a 2 a) 1 o (1). (2.1)p

To derive the asymptotic distribution of this vector we can use the fact (see Magnus and Neudecker,
1988, Chapt. 8, Th. 7) that the differential with respect to b of an eigenvector of b9H9Hb,
corresponding to a simple eigenvalue l, has the form

da 5 P(db9H9Hb 1 b9H9Hdb )a, (2.2)

9where P denotes the Moore–Penrose inverse of the singular matrix lI 2 b9H9Hb. Letting h denotes i

the ith row of H, we can write

9 9h bda 5 a9b9H9HdbPb9h 1 h bPb9H9Hdbai i i

9 95 (h bP ^ a9b9H9H 1 a9 ^ h bPb9H9H )Vec db,i i

and hence

9 9 9h d(ba) 5 h dba 1 h bda 5 (a ^ h 1 Pb9h ^ H9Hba 1 a ^ H9HbPb9h )9 Vec dbi i i i i i

9; k Vec dbi

(say). The p-vector in (2.1) is therefore approximated linearly, element by element, by
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ˆ ˆ9 ˆ 9Th ba 5 Tk Vec(b 2 b ) 1 o (1), i 5 1, . . . , p. (2.5)i i p

The vectors k (sm 3 1) are continuous functions of b. Under H , (2.5) can be treated as exact if k isi 0 i
ˆ ˆ* *evaluated at a point on the line segment joining b and b, say b . Whether evaluated at b or at b ,

ˆconsistency of b for b implies that the k converge to fixed limits at b as T → `.i
ˆAccording to Theorem 5.1 of Johansen (1991), T Vec(b 2 b ) (sm 3 1) is LAMN under standard

1assumptions, and the limiting conditional covariance matrix is consistently estimated by

21ˆ ˆ ˆ ˆ ˆˆ ˆT(D 2 I ) ^ M nn9M ; TA ^ B, (2.6)s b b

ˆ ˆ ˆwhere the identity defines A and B, n (m 3 (m 2 s)) is the matrix of the eigenvectors corresponding to
21 ˆ9the m 2 s smallest eigenvalues of S S S with respect to S (i.e., those not included in b ), and0k 00 0k kk

21ˆ ˆ ˆ ˆ ˆ ˆM 5 I 2 b(b9b ) b9. Johansen’s covariance matrix formula is given for b normalised by a matrixb m
21ˆ ˆ ˆc, or in other words for b 5 b(c9b ) such that c9b is a matrix of full rank (Johansen, 1991, Sectionc

215). Here, we choose c 5 b(b9b ) , so that b 5 b. The formula is also derived for the general casec

where b is subject to restrictions of the form b 5 Hw where H is a known matrix and w is a matrix of
parameters, but we consider the case H 5 I , so that this matrix disappears from the formula. Withm

ˆthese substitutions, and the replacement of b by the consistent estimate b, (2.6) corresponds to
Johansen’s expression (5.6). For the case of the model with deterministic trends constrained to zero,
the corresponding version of Johansen’s expression (5.8) is used.

ˆCombining (2.6) with (2.5) evaluated at the estimate b, the asymptotic conditional covariance
ˆ ˆˆmatrix of THba is consistently estimated by the matrix TV ( p 3 p) where (omitting hats for clarity)

ˆthe typical element of V is

9 9 9 9v 5 a9Aa.h Bh 1 h bPAa.a9b9H9HBh 1 a9Aa.h BH9HbPb9h 1 a9APb9h .h BH9Hbaij i j i j i j j i

9 9 91 h bPAPbh .a9bH9HBH9Hba 1 h bPa.a9b9H9HBH9HbPb9h 1 a9Aa.h bPb9H9HBhi j i j i j

9 91 a9APb9h .h bPb9H9HBH9Hba 1 a9Aa.h bPb9H9HBH9HbPb9h . (2.7)j i i j

Under H the statistic0

212 ˆ ˆ ˆˆ ˆT a 9bH9V Hba (2.8)

ˆis asymptotically chi-squared with p degrees of freedom, provided V is of rank p.
ˆ ˆ ˆˆ ˆThe latter requirement presents a difficulty when p . m 2 s, since the matrix B 5 M nn9M in (2.6)b b

ˆis of rank m 2 s. Note that the distribution of T Vec(b 2 b ) is singular, of rank s(m 2 s), in view of
2 ˆthe s restrictions to which b is subject. This difficulty can be overcome by employing the

ˆ 9Moore–Penrose inverse of the variance matrix. Diagonalising V as Q LQ , where L (r 3 r) is the1 1

diagonal matrix of the positive eigenvalues, with r 5 minh p,m 2 sj, the test statistic

2 21ˆ ˆˆ 9 ˆT a 9b9H9Q L Q Hba (2.9)1 1

is asymptotically chi-squared with r degrees of freedom on H . The implication of having p . m 2 s0

1Note that in this model the matrix specified is random even asymptotically. It can be called the covariance matrix because
test statistics formed from it in the conventional manner have the standard asymptotic distributions under H . See Johansen0

(1991) for further details.
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restrictions is that we are unable to test them all independently because of the way restrictions are
imposed on b for estimation. We can however test the m 2 s independent restrictions represented by
Q H, which in general will hold only if (1.2) is true.1

3. Applications

Consider the case of zero (exclusion) restrictions. After suitable re-ordering, let H 5 [0,I ] forp

s # p # m 2 2. This corresponds to the hypothesis that the cointegrating space contains a vector with
only m 2 p nonzero elements, and equivalently that the first m 2 p elements of x form a cointegratedt

subset. Moreover, the cointegrating vector for this subset is directly estimated by the vector

ˆ ˆ ˆb 5 Gba ((m 2 p) 3 1), (3.1)

ˆwhere G 5 [I ,0], and b is LAMN with asymptotic conditional covariance matrix estimated bym2p

letting G replace H in (2.7).
The assumptions of Section 2 can be conveniently motivated with reference to this case. Note that

if we have s linearly independent cointegrating vectors for m variables, we can always construct a
cointegrating vector containing s 2 1 zeros, by forming appropriate linear combinations. The test
statistic corresponding to this case is identically zero by construction. Next, consider the case where
b9H9Hb has more than one zero eigenvalue. Then, there exist two or more linearly independent
cointegrating vectors for the same subset of m 2 p variables. By the preceding argument, this means
there exists a cointegrating vector with more than p zero elements, and hence a more restrictive
hypothesis than that under test is also true. So while the derivation of the null distribution is not valid
for multiple zero eigenvalues, we note that there exists a test statistic computed for at least p 1 1
restrictions which does have the stated distribution. On heuristic grounds we should expect the test
size in the case of multiple zeros to be if anything lower than the nominal size, so that the test should
perform correctly in practice. Monte Carlo experiments support this conjecture.

The phenomenon of a cointegrating subset, in the context of a structural model of cointegration, is
analysed in Davidson (1994) and Davidson (1997). The latter paper utilises the present test to
implement the algorithm MINIMAL, which determines all the irreducible cointegrating subsets of a
data set (those from which no variable can be dropped without ‘losing’ cointegration) by an
exhaustive sequence of exclusion tests. It is shown that an identified structural cointegrating relation is
always irreducible. Moreover, LAMN estimates of the structural parameters are obtained directly from

2the Johansen matrix by formula (3.1), without the need for instruments or iterative methods.
A test of ‘long run’ structural restrictions can always be cast in the form of (1.2). Thus, suppose

that the economic model generating the data according to (1.1) has structural parameters a and b . In0 0
21(1.1) b 5 b d and a 5 a d , where d (s 3 s) is an arbitrary nonsingular matrix to which Johansen’s0 0

procedure assigns a value different from I , in general. Prior restrictions on a and b are required tos 0 0

identify the remaining elements from b and a, according to the usual rank condition. The structural

2This assumes that no further restrictions on the vector are accepted. A vector which is not irreducible is either not structural,
or not identified. Also, note that an irreducible cointegrating relation is not necessarily structural. See the above-cited papers
for details.
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hypothesis that b (a column of b , labelled 1 without loss of generality) is subject to p linear01 0

restrictions can be written as Hb 5 0. But if b is identified (i.e., such that the restrictions are01 01

overidentifying) it has the representation b 5 ba, where a is unique up to normalisation. In other01

words, the structural hypothesis always has the representation (1.2), in which the uniqueness
assumption of Section 2 must hold.

Finally, we note that Pesaran and Shin (1994) have constructed likelihood ratio tests of structural
restrictions on b by estimating (1.1) subject to the constraints, in effect setting d 5 I by imposition0 s

of identifying restrictions. This provides an alternative to the present procedure, but numerical
optimisation is required to compute the constrained estimates, whereas our procedure requires only the
estimation of the standard Johansen model. (Gauss code to compute the statistics described in this
paper is available from the author.)
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