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Abstract

A test is derived of the hypothesis that the cointegrating space of a collection of 1(1) variables contains a vector subject to
a set of linear restrictions. Applications to the problem of testing for irreducible cointegrating relations, and also structural
hypotheses, are discussed. [0 1998 Elsevier Science SA.

Keywords: Cointegration; Irreducible cointegrating vector; Johansen; Vector error correction; Wald test

JEL classification. C32

1. Introduction

This article derives a test of restrictions on the cointegrating vectors estimated by the Johansen
(1988), (1991) maximum likelihood estimator. Let the DGP for the (1) process x, (m X 1) be written
as

k—1
Ax =2 TAX_ | + aB'X_, + U, (1.1)
j=1

for t=1,...,T, where « and B are mX's matrices of rank s (assumed known). Recall that in
Johansen’s procedure B, the MLE of B, is calculated as the set of eigenvectors corresponding to the s
largest eigenvalues of S;, Sy, S, With respect to S,,, where in the usual notation, S,,, S, and S, are
the moment matrices formed from the residuals from regressing Ax, and xI «, respectively, onto the
Ax,_;. Accordingly, B is normalised to satisfy 3'S, 8=, and B'S},Sys S, .8 =D, where D is the
dlagonal matrix formed from the s largest eigenvalues. As is well known, these vectors span the
cointegrating space, but have no interpretation as structural economic parameters.

Johansen and Juselius (1990, Section 5.2) show how to construct Wald tests for hypotheses of the
form HB =0, where H is a known p X m matrix of constants, using the result shown in Johansen
(1991) that T(B — B) is locally asymptotically mixed normal (LAMN) under standard assumptions.
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While this type of hypothesis is invariant to the normalisation since all the columns of B satisfy the
same restrictions under the null, it is not widely applicable. By contrast, the hypothesis we consider
here is that the cointegrating space contains a vector which satisfies restrictions H. This may be
expressed as

H,: Ja(s X 1) such that HBa = 0. (1.2)

The chief motivation of this approach is to give direct tests of structural hypotheses on the
cointegrating relationships of the model. As a byproduct, estimates of identified structural parameters
can be solved from B. The test is described in Section 2, and the applications to structural modelling
are briefly outlined in Section 3.

2. The test

Assume p =s, since otherwise H, is trivialy true. Further, assume that the vector a specified in
(1.2) is unique up to a normalisation. (Both of these assumptions will be motivated in Section 3.)
Then, under H, the matrix B'H'HB (sX s) has rank of s— 1, its smallest eigenvalue is 0, and a
equals the eigenvector corresponding to this simple eigenvalue, up to a normalisation. On the other
hand, if H, is false the minimal eigenvalue is positive. H, can therefore be restated as HBa = 0 where
a is the eigenvector corresponding to the smallest eigenvalue of 3'H'Hp. The vector a so defined is a
continuous function of g, differentiable to all orders. If & denotes the eigenvector corresponding to the
smallest eigenvalue of B'H'Hp, then & is consistent for a. Since T(B8 — B) = O,(1), we may write,
when H, is true

THBA = TH(B — B)a+ THB(& — a) + 0 (). (2.1)

To derive the asymptotic distribution of this vector we can use the fact (see Magnus and Neudecker,
1988, Chapt. 8, Th. 7) that the differential with respect to 8 of an eigenvector of B'H'Hp,
corresponding to a simple eigenvalue A, has the form

da=P(dB'H'HB + B'H'HdB)a, (2.2)

where P denotes the Moore—Penrose inverse of the singular matrix Al — 8’H'HB. Letting h/ denote
the ith row of H, we can write

h/ Bda=a’B'H’HdBPB’h, + h! BPB’'H'HdBa
=(h'BP®a’'B'H'H +a’ ®h/ BPB'H'H)Vec dB,
and hence

h'd(Ba) = h'dBa+ h/ Bda = (a®h, + PB’h, @ H'HBa +a®H'HBPB’h,)’ Vec dB
=k Vecdp

(say). The p-vector in (2.1) is therefore approximated linearly, element by element, by
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Th/ a=Tk/ Vec(8— B) +0,(1), i=1,...,p. (2.5)

The vectors k; (sm X 1) are continuous functions of 8. Under HO, (2.5) can be treated as exact if k; is
evaluated at apomt on the line segment joining B and B, say B*. Whether evaluated at 3 or at ,8
consistency of B for B implies that the k, converge to fixed limitsat B8 as T — o°.

According to Theorem 5.1 of Johansen (1991), T Vec(B — 8) (smx 1) is LAMN under standard
assumptions, and the limiting conditional covariance matrix* is consistently estimated by

(O " -1)®M, ' M, =TARB, (2.6)

where the identity defines A and B, » (m X (m — 9)) is the matrix of the eigenvectors corresponding to
the m — s smallest eigenval ues of S}, Sog 'Sy, With respect to S, (i.e., those not included in B), and
M =1,— ,B(B B) ,8 _Johansen’s covarlance matrix formulais given for B normalised by a matrix
C, or in other words for ,BC (c B) such that ¢’ 8 is amatrix of full rank (Johansen, 1991, Section
5). Here, we choose ¢ = B(B8'B) ', so that B, = B. The formula is also derived for the general case
where B is subject to restrictions of theform B =He where H is aknown matrix and ¢ isamatrix of
parameters, but we consider the case H =1, so that this matrix disappears from the formula. With
these substitutions, and the replacement of 8 by the consistent estimate B, (2.6) corresponds to
Johansen’s expression (5.6). For the case of the model with deterministic trends constrained to zero,
the corresponding version of Johansen’s expression (5.8) is used.

Combining (2.6) with (2.5) evaluated at the estimate 3, the asymptotic conditional covariance
matrix of THAA is consistently estimated by the matrix TV (p X p) where (omitting hats for clarity)
the typical element of V is

vy =a'Aah/Bh +hj BPAaa’B'H'HBh, +a’'Aah/BH'HBPA'N + a’APB'h.h/BH'Hpa
+ hi’BPAP,th.a’BH’HBH’H,BaJr hi',BPa.a’,fg”H’HBH’H,LS’P,B’hj + a’Aa.hi’ﬁPB’H’Hth
+a’APB’h.h/ BPB’H'HBH'HBa + a’ Aa.h/ BPB'H'HBH'HBPB'h;. (27)
Under H, the statistic
T8’ BH'V Hpa (2.8)

is asymptotically chi-squared with p degrees of freedom, provided V is of rank p.

The latter requirement presents a difficulty when p>m — s, since the matrix B= M v M in (2.6)
is of rank m — s. Note that the distribution of T Vec(B — B) is singular, of rank s(m— 9), |n view of
the s® restrictions to which 3 is subject. This difficulty can be overcome by employing the
Moore—Penrose inverse of the variance matrix. Diagondising V as Q;AQ,, where A (r Xr) is the
diagonal matrix of the positive eigenvalues, with r = min{p,m — s}, the test statistic

T?a'B'H'Q,A "Q,HpBA (2.9)
is asymptotically chi-squared with r degrees of freedom on H,. The implication of having p>m-—s
*Note that in this model the matrix specified is random even asymptotically. It can be called the covariance matrix because

test statistics formed from it in the conventional manner have the standard asymptotic distributions under H,. See Johansen
(1991) for further details.
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restrictions is that we are unable to test them al independently because of the way restrictions are
imposed on B for estimation. We can however test the m — s independent restrictions represented by
Q,H, which in general will hold only if (1.2) is true.

3. Applications

Consider the case of zero (exclusion) restrictions. After suitable re-ordering, let H=[0,l ] for
s=p=m-— 2. This corresponds to the hypothesis that the cointegrating space contains a vector with
only m — p nonzero elements, and equivalently that the first m — p elements of x, form a cointegrated
subset. Moreover, the cointegrating vector for this subset is directly estimated by the vector

b=Gga (m—p)x1), (3.1)

where G =l,,_,,0], and b is LAMN with asymptotic conditional covariance matrix estimated by
letting G replace H in (2.7).

The assumptions of Section 2 can be conveniently motivated with reference to this case. Note that
if we have s linearly independent cointegrating vectors for m variables, we can always construct a
cointegrating vector containing s— 1 zeros, by forming appropriate linear combinations. The test
statistic corresponding to this case is identically zero by construction. Next, consider the case where
B'H'HB has more than one zero eigenvalue. Then, there exist two or more linearly independent
cointegrating vectors for the same subset of m — p variables. By the preceding argument, this means
there exists a cointegrating vector with more than p zero elements, and hence a more restrictive
hypothesis than that under test is also true. So while the derivation of the null distribution is not valid
for multiple zero eigenvalues, we note that there exists a test statistic computed for at least p + 1
restrictions which does have the stated distribution. On heuristic grounds we should expect the test
size in the case of multiple zeros to be if anything lower than the nominal size, so that the test should
perform correctly in practice. Monte Carlo experiments support this conjecture.

The phenomenon of a cointegrating subset, in the context of a structural model of cointegration, is
analysed in Davidson (1994) and Davidson (1997). The latter paper utilises the present test to
implement the algorithm MINIMAL, which determines all the irreducible cointegrating subsets of a
data set (those from which no variable can be dropped without ‘losing’ cointegration) by an
exhaustive sequence of exclusion tests. It is shown that an identified structural cointegrating relation is
aways irreducible. Moreover, LAMN estimates of the structural parameters are obtained directly from
the Johansen matrix by formula (3.1), without the need for instruments or iterative methods’

A test of ‘long run’ structural restrictions can always be cast in the form of (1.2). Thus, suppose
that the economic model generating the data according to (1.1) has structural parameters a,, and 3,. In
(11) B=pB,dand a = a,d ', where d (s X ) is an arbitrary nonsingular matrix to which Johansen’s
procedure assigns a value different from I, in general. Prior restrictions on «, and 3, are required to
identify the remaining elements from B8 and «, according to the usua rank condition. The structural

*This assumes that no further restrictions on the vector are accepted. A vector which is not irreducible is either not structural,
or not identified. Also, note that an irreducible cointegrating relation is not necessarily structural. See the above-cited papers
for details.
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hypothesis that 3,, (a column of B,, labelled 1 without loss of generality) is subject to p linear
restrictions can be written as HB,, = 0. But if B, is identified (i.e., such that the restrictions are
overidentifying) it has the representation 3,, = Ba, where a is unique up to normalisation. In other
words, the structural hypothesis always has the representation (1.2), in which the uniqueness
assumption of Section 2 must hold.

Finally, we note that Pesaran and Shin (1994) have constructed likelihood ratio tests of structural
restrictions on 3, by estimating (1.1) subject to the constraints, in effect setting d = I by imposition
of identifying restrictions. This provides an aternative to the present procedure, but numerical
optimisation is required to compute the constrained estimates, whereas our procedure requires only the
estimation of the standard Johansen model. (Gauss code to compute the statistics described in this
paper is available from the author.)
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